mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Imagenet Features\!
This commit is contained in:
parent
2c6d4ba1d5
commit
bc902b277e
@ -10,6 +10,7 @@ list *get_paths(char *filename)
|
||||
{
|
||||
char *path;
|
||||
FILE *file = fopen(filename, "r");
|
||||
if(!file) file_error(filename);
|
||||
list *lines = make_list();
|
||||
while((path=fgetl(file))){
|
||||
list_insert(lines, path);
|
||||
|
23
src/image.c
23
src/image.c
@ -4,6 +4,21 @@
|
||||
|
||||
int windows = 0;
|
||||
|
||||
image image_distance(image a, image b)
|
||||
{
|
||||
int i,j;
|
||||
image dist = make_image(a.h, a.w, 1);
|
||||
for(i = 0; i < a.c; ++i){
|
||||
for(j = 0; j < a.h*a.w; ++j){
|
||||
dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2);
|
||||
}
|
||||
}
|
||||
for(j = 0; j < a.h*a.w; ++j){
|
||||
dist.data[j] = sqrt(dist.data[j]);
|
||||
}
|
||||
return dist;
|
||||
}
|
||||
|
||||
void subtract_image(image a, image b)
|
||||
{
|
||||
int i;
|
||||
@ -370,9 +385,11 @@ image load_image(char *filename, int h, int w)
|
||||
printf("Cannot load file image %s\n", filename);
|
||||
exit(0);
|
||||
}
|
||||
IplImage *resized = resizeImage(src, h, w, 1);
|
||||
cvReleaseImage(&src);
|
||||
src = resized;
|
||||
if(h && w ){
|
||||
IplImage *resized = resizeImage(src, h, w, 1);
|
||||
cvReleaseImage(&src);
|
||||
src = resized;
|
||||
}
|
||||
image out = ipl_to_image(src);
|
||||
cvReleaseImage(&src);
|
||||
return out;
|
||||
|
@ -10,6 +10,7 @@ typedef struct {
|
||||
float *data;
|
||||
} image;
|
||||
|
||||
image image_distance(image a, image b);
|
||||
void scale_image(image m, float s);
|
||||
void add_scalar_image(image m, float s);
|
||||
void normalize_image(image p);
|
||||
|
@ -21,18 +21,18 @@ network make_network(int n)
|
||||
return net;
|
||||
}
|
||||
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l)
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"filters=%d\n"
|
||||
fprintf(fp, "[convolutional]\n");
|
||||
if(first) fprintf(fp, "height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->h, l->w, l->c);
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
"activation=%s\n",
|
||||
l->h, l->w, l->c,
|
||||
l->n, l->size, l->stride,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "data=");
|
||||
@ -40,14 +40,14 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l)
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l)
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[connected]\n"
|
||||
"input=%d\n"
|
||||
"output=%d\n"
|
||||
fprintf(fp, "[connected]\n");
|
||||
if(first) fprintf(fp, "input=%d\n", l->inputs);
|
||||
fprintf(fp, "output=%d\n"
|
||||
"activation=%s\n",
|
||||
l->inputs, l->outputs,
|
||||
l->outputs,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "data=");
|
||||
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
@ -55,22 +55,21 @@ void print_connected_cfg(FILE *fp, connected_layer *l)
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l)
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
|
||||
{
|
||||
fprintf(fp, "[maxpool]\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"stride=%d\n\n",
|
||||
l->h, l->w, l->c,
|
||||
l->stride);
|
||||
fprintf(fp, "[maxpool]\n");
|
||||
if(first) fprintf(fp, "height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->h, l->w, l->c);
|
||||
fprintf(fp, "stride=%d\n\n", l->stride);
|
||||
}
|
||||
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l)
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
|
||||
{
|
||||
fprintf(fp, "[softmax]\n"
|
||||
"input=%d\n\n",
|
||||
l->inputs);
|
||||
fprintf(fp, "[softmax]\n");
|
||||
if(first) fprintf(fp, "input=%d\n", l->inputs);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void save_network(network net, char *filename)
|
||||
@ -81,13 +80,13 @@ void save_network(network net, char *filename)
|
||||
for(i = 0; i < net.n; ++i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL)
|
||||
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]);
|
||||
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0);
|
||||
else if(net.types[i] == CONNECTED)
|
||||
print_connected_cfg(fp, (connected_layer *)net.layers[i]);
|
||||
print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]);
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i]);
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
@ -36,9 +36,9 @@ void forward_softmax_layer(const softmax_layer layer, float *input)
|
||||
}
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
sum += exp(input[i]-largest);
|
||||
printf("%f, ", input[i]);
|
||||
//printf("%f, ", input[i]);
|
||||
}
|
||||
printf("\n");
|
||||
//printf("\n");
|
||||
if(sum) sum = largest+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
|
105
src/tests.c
105
src/tests.c
@ -188,37 +188,64 @@ void test_data()
|
||||
free_data(train);
|
||||
}
|
||||
|
||||
void test_full()
|
||||
void train_full()
|
||||
{
|
||||
network net = parse_network_cfg("full.cfg");
|
||||
network net = parse_network_cfg("cfg/imagenet.cfg");
|
||||
srand(2222222);
|
||||
int i = 800;
|
||||
int i = 0;
|
||||
char *labels[] = {"cat","dog"};
|
||||
float lr = .00001;
|
||||
float momentum = .9;
|
||||
float decay = 0.01;
|
||||
while(i++ < 1000 || 1){
|
||||
visualize_network(net);
|
||||
cvWaitKey(100);
|
||||
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
|
||||
while(1){
|
||||
i += 1000;
|
||||
data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
|
||||
image im = float_to_image(256, 256, 3,train.X.vals[0]);
|
||||
show_image(im, "input");
|
||||
cvWaitKey(100);
|
||||
//visualize_network(net);
|
||||
//cvWaitKey(100);
|
||||
//show_image(im, "input");
|
||||
//cvWaitKey(100);
|
||||
//scale_data_rows(train, 1./255.);
|
||||
normalize_data_rows(train);
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
|
||||
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
|
||||
end = clock();
|
||||
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
||||
free_data(train);
|
||||
if(i%100==0){
|
||||
if(i%10000==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "backup_%d.cfg", i);
|
||||
//save_network(net, buff);
|
||||
sprintf(buff, "cfg/assira_backup_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
//lr *= .99;
|
||||
}
|
||||
}
|
||||
void test_full()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/backup_1300.cfg");
|
||||
srand(2222222);
|
||||
int i,j;
|
||||
int total = 100;
|
||||
char *labels[] = {"cat","dog"};
|
||||
FILE *fp = fopen("preds.txt","w");
|
||||
for(i = 0; i < total; ++i){
|
||||
visualize_network(net);
|
||||
cvWaitKey(100);
|
||||
data test = load_data_image_pathfile_part("images/assira/test.list", i, total, labels, 2, 256, 256);
|
||||
image im = float_to_image(256, 256, 3,test.X.vals[0]);
|
||||
show_image(im, "input");
|
||||
cvWaitKey(100);
|
||||
normalize_data_rows(test);
|
||||
for(j = 0; j < test.X.rows; ++j){
|
||||
float *x = test.X.vals[j];
|
||||
forward_network(net, x);
|
||||
int class = get_predicted_class_network(net);
|
||||
fprintf(fp, "%d\n", class);
|
||||
}
|
||||
free_data(test);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void test_nist()
|
||||
{
|
||||
@ -398,6 +425,7 @@ void train_VOC()
|
||||
|
||||
int voc_size(int x)
|
||||
{
|
||||
x = x-1+3;
|
||||
x = x-1+3;
|
||||
x = x-1+3;
|
||||
x = (x-1)*2+1;
|
||||
@ -411,13 +439,14 @@ image features_output_size(network net, IplImage *src, int outh, int outw)
|
||||
{
|
||||
int h = voc_size(outh);
|
||||
int w = voc_size(outw);
|
||||
printf("%d %d\n", h, w);
|
||||
|
||||
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
|
||||
cvResize(src, sized, CV_INTER_LINEAR);
|
||||
image im = ipl_to_image(sized);
|
||||
reset_network_size(net, im.h, im.w, im.c);
|
||||
forward_network(net, im.data);
|
||||
image out = get_network_image_layer(net, 5);
|
||||
image out = get_network_image_layer(net, 6);
|
||||
//printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
|
||||
free_image(im);
|
||||
cvReleaseImage(&sized);
|
||||
@ -500,7 +529,7 @@ void features_VOC(int part, int total)
|
||||
void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
|
||||
{
|
||||
int i,j;
|
||||
network net = parse_network_cfg("cfg/voc_features.cfg");
|
||||
network net = parse_network_cfg("cfg/imagenet.cfg");
|
||||
char image_path[1024];
|
||||
sprintf(image_path, "%s%s",image_dir, image_file);
|
||||
char out_path[1024];
|
||||
@ -557,8 +586,54 @@ void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
|
||||
cvReleaseImage(&src);
|
||||
}
|
||||
|
||||
void test_distribution()
|
||||
{
|
||||
IplImage* img = 0;
|
||||
if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
|
||||
network net = parse_network_cfg("cfg/voc_features.cfg");
|
||||
int h = img->height/8-2;
|
||||
int w = img->width/8-2;
|
||||
image out = features_output_size(net, img, h, w);
|
||||
int c = out.c;
|
||||
out.c = 1;
|
||||
show_image(out, "output");
|
||||
out.c = c;
|
||||
image input = ipl_to_image(img);
|
||||
show_image(input, "input");
|
||||
CvScalar s;
|
||||
int i,j;
|
||||
image affects = make_image(input.h, input.w, 1);
|
||||
int count = 0;
|
||||
for(i = 0; i<img->height; i += 1){
|
||||
for(j = 0; j < img->width; j += 1){
|
||||
IplImage *copy = cvCloneImage(img);
|
||||
s=cvGet2D(copy,i,j); // get the (i,j) pixel value
|
||||
printf("%d/%d\n", count++, img->height*img->width);
|
||||
s.val[0]=0;
|
||||
s.val[1]=0;
|
||||
s.val[2]=0;
|
||||
cvSet2D(copy,i,j,s); // set the (i,j) pixel value
|
||||
image mod = features_output_size(net, copy, h, w);
|
||||
image dist = image_distance(out, mod);
|
||||
show_image(affects, "affects");
|
||||
cvWaitKey(1);
|
||||
cvReleaseImage(©);
|
||||
//affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
|
||||
affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
|
||||
free_image(mod);
|
||||
free_image(dist);
|
||||
}
|
||||
}
|
||||
show_image(affects, "Origins");
|
||||
cvWaitKey(0);
|
||||
cvWaitKey(0);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
//train_full();
|
||||
//test_distribution();
|
||||
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
|
||||
|
||||
//test_blas();
|
||||
|
Loading…
Reference in New Issue
Block a user