mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Stable place to commit
This commit is contained in:
@ -43,6 +43,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
|
||||
for(i = 0; i < outputs; ++i){
|
||||
layer->biases[i] = scale;
|
||||
// layer->biases[i] = 1;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
@ -113,9 +114,10 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
{
|
||||
int i;
|
||||
float alpha = 1./layer.batch;
|
||||
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
|
||||
axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
@ -123,7 +125,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
float *a = input;
|
||||
float *b = layer.delta;
|
||||
float *c = layer.weight_updates;
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
@ -156,13 +158,18 @@ void push_connected_layer(connected_layer layer)
|
||||
|
||||
void update_connected_layer_gpu(connected_layer layer)
|
||||
{
|
||||
/*
|
||||
cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
|
||||
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs));
|
||||
*/
|
||||
|
||||
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
||||
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1);
|
||||
//pull_connected_layer(layer);
|
||||
}
|
||||
|
||||
void forward_connected_layer_gpu(connected_layer layer, float * input)
|
||||
@ -183,10 +190,11 @@ void forward_connected_layer_gpu(connected_layer layer, float * input)
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta)
|
||||
{
|
||||
float alpha = 1./layer.batch;
|
||||
int i;
|
||||
gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1);
|
||||
axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
@ -194,7 +202,7 @@ void backward_connected_layer_gpu(connected_layer layer, float * input, float *
|
||||
float * a = input;
|
||||
float * b = layer.delta_gpu;
|
||||
float * c = layer.weight_updates_gpu;
|
||||
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
|
Reference in New Issue
Block a user