diff --git a/cfg/coco.data b/cfg/coco.data new file mode 100644 index 00000000..30038417 --- /dev/null +++ b/cfg/coco.data @@ -0,0 +1,8 @@ +classes= 80 +train = /home/pjreddie/data/coco/trainvalno5k.txt +valid = coco_testdev +#valid = data/coco_val_5k.list +names = data/coco.names +backup = /home/pjreddie/backup/ +eval=coco + diff --git a/cfg/imagenet1k.dataset b/cfg/imagenet1k.data similarity index 100% rename from cfg/imagenet1k.dataset rename to cfg/imagenet1k.data diff --git a/cfg/voc.data b/cfg/voc.data new file mode 100644 index 00000000..8246b3af --- /dev/null +++ b/cfg/voc.data @@ -0,0 +1,6 @@ +classes= 20 +train = /home/pjreddie/data/voc/train.txt +valid = /home/pjreddie/data/voc/2007_test.txt +names = data/pascal.names +backup = /home/pjreddie/backup/ + diff --git a/cfg/yolo.cfg b/cfg/yolo.cfg index c4f415c1..4bf904cc 100644 --- a/cfg/yolo.cfg +++ b/cfg/yolo.cfg @@ -1,36 +1,25 @@ [net] -batch=1 -subdivisions=1 -height=448 -width=448 +batch=64 +subdivisions=8 +height=416 +width=416 channels=3 momentum=0.9 decay=0.0005 -saturation=1.5 -exposure=1.5 +angle=0 +saturation = 1.5 +exposure = 1.5 hue=.1 -learning_rate=0.0005 +learning_rate=0.001 +max_batches = 120000 policy=steps -steps=200,400,600,20000,30000 -scales=2.5,2,2,.1,.1 -max_batches = 40000 +steps=-1,100,80000,100000 +scales=.1,10,.1,.1 [convolutional] batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=192 +filters=32 size=3 stride=1 pad=1 @@ -40,6 +29,54 @@ activation=leaky size=2 stride=2 +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + [convolutional] batch_normalize=1 filters=128 @@ -56,6 +93,34 @@ stride=1 pad=1 activation=leaky +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + [convolutional] batch_normalize=1 filters=256 @@ -76,78 +141,6 @@ activation=leaky size=2 stride=2 -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - [convolutional] batch_normalize=1 filters=1024 @@ -156,10 +149,6 @@ stride=1 pad=1 activation=leaky -[maxpool] -size=2 -stride=2 - [convolutional] batch_normalize=1 filters=512 @@ -192,6 +181,7 @@ stride=1 pad=1 activation=leaky + ####### [convolutional] @@ -205,10 +195,19 @@ activation=leaky [convolutional] batch_normalize=1 size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[route] +layers=-9 + +[reorg] stride=2 -pad=1 -filters=1024 -activation=leaky + +[route] +layers=-1,-3 [convolutional] batch_normalize=1 @@ -219,39 +218,27 @@ filters=1024 activation=leaky [convolutional] -batch_normalize=1 -size=3 +size=1 stride=1 pad=1 -filters=1024 -activation=leaky - -[local] -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[dropout] -probability=.5 - -[connected] -output= 1715 +filters=425 activation=linear -[detection] -classes=20 +[region] +anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741 +bias_match=1 +classes=80 coords=4 -rescore=1 -side=7 -num=3 -softmax=0 -sqrt=1 +num=5 +softmax=1 jitter=.2 +rescore=1 -object_scale=1 -noobject_scale=.5 +object_scale=5 +noobject_scale=1 class_scale=1 -coord_scale=5 +coord_scale=1 +absolute=1 +thresh = .6 +random=0 diff --git a/cfg/yolo_voc.cfg b/cfg/yolo_voc.cfg new file mode 100644 index 00000000..ceb3f2ac --- /dev/null +++ b/cfg/yolo_voc.cfg @@ -0,0 +1,244 @@ +[net] +batch=64 +subdivisions=8 +height=416 +width=416 +channels=3 +momentum=0.9 +decay=0.0005 +angle=0 +saturation = 1.5 +exposure = 1.5 +hue=.1 + +learning_rate=0.0001 +max_batches = 45000 +policy=steps +steps=100,25000,35000 +scales=10,.1,.1 + +[convolutional] +batch_normalize=1 +filters=32 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=64 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=64 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + + +####### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[route] +layers=-9 + +[reorg] +stride=2 + +[route] +layers=-1,-3 + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +size=1 +stride=1 +pad=1 +filters=125 +activation=linear + +[region] +anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 +bias_match=1 +classes=20 +coords=4 +num=5 +softmax=1 +jitter=.2 +rescore=1 + +object_scale=5 +noobject_scale=1 +class_scale=1 +coord_scale=1 + +absolute=1 +thresh = .6 +random=0 diff --git a/cfg/tiny-coco.cfg b/cfg/yolov1/tiny-coco.cfg similarity index 100% rename from cfg/tiny-coco.cfg rename to cfg/yolov1/tiny-coco.cfg diff --git a/cfg/tiny-yolo.cfg b/cfg/yolov1/tiny-yolo.cfg similarity index 100% rename from cfg/tiny-yolo.cfg rename to cfg/yolov1/tiny-yolo.cfg diff --git a/cfg/xyolo.test.cfg b/cfg/yolov1/xyolo.test.cfg similarity index 100% rename from cfg/xyolo.test.cfg rename to cfg/yolov1/xyolo.test.cfg diff --git a/cfg/yolo-coco.cfg b/cfg/yolov1/yolo-coco.cfg similarity index 100% rename from cfg/yolo-coco.cfg rename to cfg/yolov1/yolo-coco.cfg diff --git a/cfg/yolo-small.cfg b/cfg/yolov1/yolo-small.cfg similarity index 100% rename from cfg/yolo-small.cfg rename to cfg/yolov1/yolo-small.cfg diff --git a/cfg/yolov1/yolo.cfg b/cfg/yolov1/yolo.cfg new file mode 100644 index 00000000..c4f415c1 --- /dev/null +++ b/cfg/yolov1/yolo.cfg @@ -0,0 +1,257 @@ +[net] +batch=1 +subdivisions=1 +height=448 +width=448 +channels=3 +momentum=0.9 +decay=0.0005 +saturation=1.5 +exposure=1.5 +hue=.1 + +learning_rate=0.0005 +policy=steps +steps=200,400,600,20000,30000 +scales=2.5,2,2,.1,.1 +max_batches = 40000 + +[convolutional] +batch_normalize=1 +filters=64 +size=7 +stride=2 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=192 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=128 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=256 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[maxpool] +size=2 +stride=2 + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=512 +size=1 +stride=1 +pad=1 +activation=leaky + +[convolutional] +batch_normalize=1 +filters=1024 +size=3 +stride=1 +pad=1 +activation=leaky + +####### + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=2 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[convolutional] +batch_normalize=1 +size=3 +stride=1 +pad=1 +filters=1024 +activation=leaky + +[local] +size=3 +stride=1 +pad=1 +filters=256 +activation=leaky + +[dropout] +probability=.5 + +[connected] +output= 1715 +activation=linear + +[detection] +classes=20 +coords=4 +rescore=1 +side=7 +num=3 +softmax=0 +sqrt=1 +jitter=.2 + +object_scale=1 +noobject_scale=.5 +class_scale=1 +coord_scale=5 + diff --git a/cfg/yolo.train.cfg b/cfg/yolov1/yolo.train.cfg similarity index 100% rename from cfg/yolo.train.cfg rename to cfg/yolov1/yolo.train.cfg diff --git a/cfg/yolo2.cfg b/cfg/yolov1/yolo2.cfg similarity index 100% rename from cfg/yolo2.cfg rename to cfg/yolov1/yolo2.cfg diff --git a/data/coco.names b/data/coco.names new file mode 100644 index 00000000..ca76c80b --- /dev/null +++ b/data/coco.names @@ -0,0 +1,80 @@ +person +bicycle +car +motorbike +aeroplane +bus +train +truck +boat +traffic light +fire hydrant +stop sign +parking meter +bench +bird +cat +dog +horse +sheep +cow +elephant +bear +zebra +giraffe +backpack +umbrella +handbag +tie +suitcase +frisbee +skis +snowboard +sports ball +kite +baseball bat +baseball glove +skateboard +surfboard +tennis racket +bottle +wine glass +cup +fork +knife +spoon +bowl +banana +apple +sandwich +orange +broccoli +carrot +hot dog +pizza +donut +cake +chair +sofa +pottedplant +bed +diningtable +toilet +tvmonitor +laptop +mouse +remote +keyboard +cell phone +microwave +oven +toaster +sink +refrigerator +book +clock +vase +scissors +teddy bear +hair drier +toothbrush diff --git a/src/blas.c b/src/blas.c index c6d59eac..31bd86b2 100644 --- a/src/blas.c +++ b/src/blas.c @@ -5,6 +5,28 @@ #include #include #include +void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out) +{ + int b,i,j,k; + int out_c = c/(stride*stride); + + for(b = 0; b < batch; ++b){ + for(k = 0; k < c; ++k){ + for(j = 0; j < h; ++j){ + for(i = 0; i < w; ++i){ + int in_index = i + w*(j + h*(k + c*b)); + int c2 = k % out_c; + int offset = k / out_c; + int w2 = i*stride + offset % stride; + int h2 = j*stride + offset / stride; + int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b)); + if(forward) out[out_index] = x[in_index]; + else out[in_index] = x[out_index]; + } + } + } + } +} void flatten(float *x, int size, int layers, int batch, int forward) { diff --git a/src/blas.h b/src/blas.h index a942024b..3d6ee7d3 100644 --- a/src/blas.h +++ b/src/blas.h @@ -4,6 +4,7 @@ void flatten(float *x, int size, int layers, int batch, int forward); void pm(int M, int N, float *A); float *random_matrix(int rows, int cols); void time_random_matrix(int TA, int TB, int m, int k, int n); +void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out); void test_blas(); diff --git a/src/darknet.c b/src/darknet.c index 14447568..776778a8 100644 --- a/src/darknet.c +++ b/src/darknet.c @@ -13,6 +13,7 @@ #endif extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); +extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh); extern void run_voxel(int argc, char **argv); extern void run_yolo(int argc, char **argv); extern void run_detector(int argc, char **argv); @@ -379,6 +380,10 @@ int main(int argc, char **argv) run_super(argc, argv); } else if (0 == strcmp(argv[1], "detector")){ run_detector(argc, argv); + } else if (0 == strcmp(argv[1], "detect")){ + float thresh = find_float_arg(argc, argv, "-thresh", .25); + char *filename = (argc > 4) ? argv[4]: 0; + test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh); } else if (0 == strcmp(argv[1], "cifar")){ run_cifar(argc, argv); } else if (0 == strcmp(argv[1], "go")){ @@ -390,7 +395,7 @@ int main(int argc, char **argv) } else if (0 == strcmp(argv[1], "coco")){ run_coco(argc, argv); } else if (0 == strcmp(argv[1], "classify")){ - predict_classifier("cfg/imagenet1k.dataset", argv[2], argv[3], argv[4], 5); + predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); } else if (0 == strcmp(argv[1], "classifier")){ run_classifier(argc, argv); } else if (0 == strcmp(argv[1], "art")){ diff --git a/src/demo.c b/src/demo.c index 91562c04..915d950b 100644 --- a/src/demo.c +++ b/src/demo.c @@ -110,6 +110,7 @@ void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const ch srand(2222222); if(filename){ + printf("video file: %s\n", filename); cap = cvCaptureFromFile(filename); }else{ cap = cvCaptureFromCAM(cam_index); diff --git a/src/detector.c b/src/detector.c index a513816c..50db65bb 100644 --- a/src/detector.c +++ b/src/detector.c @@ -490,7 +490,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam void run_detector(int argc, char **argv) { char *prefix = find_char_arg(argc, argv, "-prefix", 0); - float thresh = find_float_arg(argc, argv, "-thresh", .2); + float thresh = find_float_arg(argc, argv, "-thresh", .25); int cam_index = find_int_arg(argc, argv, "-c", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0); if(argc < 4){ diff --git a/src/image.c b/src/image.c index ad7c2d62..e7447823 100644 --- a/src/image.c +++ b/src/image.c @@ -185,10 +185,16 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs, int class = max_index(probs[i], classes); float prob = probs[i][class]; if(prob > thresh){ - //int width = pow(prob, 1./2.)*30+1; + int width = im.h * .012; + + if(0){ + width = pow(prob, 1./2.)*10+1; + alphabet = 0; + } + printf("%s: %.0f%%\n", names[class], prob*100); - int offset = class*1 % classes; + int offset = class*123457 % classes; float red = get_color(2,offset,classes); float green = get_color(1,offset,classes); float blue = get_color(0,offset,classes); diff --git a/src/parser.c b/src/parser.c index cde06b4b..84733d7b 100644 --- a/src/parser.c +++ b/src/parser.c @@ -238,9 +238,6 @@ layer parse_region(list *options, size_params params) int classes = option_find_int(options, "classes", 20); int num = option_find_int(options, "num", 1); - params.w = option_find_int(options, "side", params.w); - params.h = option_find_int(options, "side", params.h); - layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords); assert(l.outputs == params.inputs); diff --git a/src/region_layer.c b/src/region_layer.c index 5e8387dd..902778c7 100644 --- a/src/region_layer.c +++ b/src/region_layer.c @@ -44,7 +44,7 @@ region_layer make_region_layer(int batch, int w, int h, int n, int classes, int l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); #endif - fprintf(stderr, "Region Layer\n"); + fprintf(stderr, "detection\n"); srand(0); return l; diff --git a/src/reorg_layer.c b/src/reorg_layer.c index d93dd976..9b68f03f 100644 --- a/src/reorg_layer.c +++ b/src/reorg_layer.c @@ -23,7 +23,7 @@ layer make_reorg_layer(int batch, int h, int w, int c, int stride, int reverse) l.out_c = c*(stride*stride); } l.reverse = reverse; - fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c); + fprintf(stderr, "reorg /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c); l.outputs = l.out_h * l.out_w * l.out_c; l.inputs = h*w*c; int output_size = l.out_h * l.out_w * l.out_c * batch; @@ -77,45 +77,19 @@ void resize_reorg_layer(layer *l, int w, int h) void forward_reorg_layer(const layer l, network_state state) { - int b,i,j,k; - - for(b = 0; b < l.batch; ++b){ - for(k = 0; k < l.c; ++k){ - for(j = 0; j < l.h; ++j){ - for(i = 0; i < l.w; ++i){ - int in_index = i + l.w*(j + l.h*(k + l.c*b)); - - int c2 = k % l.out_c; - int offset = k / l.out_c; - int w2 = i*l.stride + offset % l.stride; - int h2 = j*l.stride + offset / l.stride; - int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b)); - l.output[out_index] = state.input[in_index]; - } - } - } + if(l.reverse){ + reorg_cpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output); + }else { + reorg_cpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 0, l.output); } } void backward_reorg_layer(const layer l, network_state state) { - int b,i,j,k; - - for(b = 0; b < l.batch; ++b){ - for(k = 0; k < l.c; ++k){ - for(j = 0; j < l.h; ++j){ - for(i = 0; i < l.w; ++i){ - int in_index = i + l.w*(j + l.h*(k + l.c*b)); - - int c2 = k % l.out_c; - int offset = k / l.out_c; - int w2 = i*l.stride + offset % l.stride; - int h2 = j*l.stride + offset / l.stride; - int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b)); - state.delta[in_index] = l.delta[out_index]; - } - } - } + if(l.reverse){ + reorg_cpu(l.delta, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta); + }else{ + reorg_cpu(l.delta, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta); } } diff --git a/src/route_layer.c b/src/route_layer.c index d18427a8..dce71180 100644 --- a/src/route_layer.c +++ b/src/route_layer.c @@ -5,7 +5,7 @@ route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes) { - fprintf(stderr,"Route Layer:"); + fprintf(stderr,"route "); route_layer l = {0}; l.type = ROUTE; l.batch = batch;