From c7b10ceadb1a78e7480d281444a31ae2a7dc1b05 Mon Sep 17 00:00:00 2001 From: Joseph Redmon Date: Fri, 6 May 2016 16:25:16 -0700 Subject: [PATCH] so much need to commit --- Makefile | 9 +- cfg/darknet.cfg | 32 ++-- src/activation_kernels.cu | 17 +- src/activations.c | 7 + src/activations.h | 13 +- src/batchnorm_layer.c | 175 ++++++++++++++++++++ src/batchnorm_layer.h | 17 ++ src/blas.h | 8 + src/blas_kernels.cu | 189 +++++++++++++++++++++ src/classifier.c | 5 +- src/classifier.h | 2 + src/connected_layer.c | 61 +++---- src/connected_layer.h | 1 + src/convolutional_kernels.cu | 209 ++++++------------------ src/convolutional_layer.c | 77 +-------- src/convolutional_layer.h | 2 +- src/crnn_layer.c | 6 +- src/darknet.c | 20 +++ src/data.c | 60 +++++-- src/data.h | 5 +- src/go.c | 268 ++++++++++++++++++++++++++---- src/gru_layer.c | 307 +++++++++++++++++++++++++++++++++++ src/gru_layer.h | 25 +++ src/image.c | 10 +- src/layer.h | 49 +++++- src/network.c | 19 +++ src/network.h | 1 + src/network_kernels.cu | 12 ++ src/parser.c | 91 ++++++++++- src/rnn.c | 103 ++++++++---- src/rnn_layer.c | 6 +- src/rnn_layer.h | 22 +-- src/utils.c | 61 +++++++ src/utils.h | 6 + src/yolo.c | 43 +---- src/yolo_demo.c | 1 - src/yolo_kernels.cu | 1 - 37 files changed, 1502 insertions(+), 438 deletions(-) create mode 100644 src/batchnorm_layer.c create mode 100644 src/batchnorm_layer.h create mode 100644 src/classifier.h create mode 100644 src/gru_layer.c create mode 100644 src/gru_layer.h diff --git a/Makefile b/Makefile index cd3edcd6..1ef1b3bb 100644 --- a/Makefile +++ b/Makefile @@ -1,5 +1,5 @@ -GPU=1 -OPENCV=1 +GPU=0 +OPENCV=0 DEBUG=0 ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20 @@ -11,7 +11,7 @@ OBJDIR=./obj/ CC=gcc NVCC=nvcc OPTS=-Ofast -LDFLAGS= -lm -pthread -lstdc++ +LDFLAGS= -lm -pthread COMMON= CFLAGS=-Wall -Wfatal-errors @@ -34,8 +34,9 @@ CFLAGS+= -DGPU LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand endif -OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o +OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o ifeq ($(GPU), 1) +LDFLAGS+= -lstdc++ OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o endif diff --git a/cfg/darknet.cfg b/cfg/darknet.cfg index 00e9c366..ff0d33e4 100644 --- a/cfg/darknet.cfg +++ b/cfg/darknet.cfg @@ -1,27 +1,20 @@ [net] batch=128 subdivisions=1 -height=256 -width=256 +height=224 +width=224 channels=3 momentum=0.9 decay=0.0005 +max_crop=320 -learning_rate=0.01 -policy=sigmoid -gamma=.00002 -step=400000 -max_batches=800000 - -[crop] -crop_height=224 -crop_width=224 -flip=1 -angle=0 -saturation=1 -exposure=1 +learning_rate=0.1 +policy=poly +power=4 +max_batches=500000 [convolutional] +batch_normalize=1 filters=16 size=3 stride=1 @@ -33,6 +26,7 @@ size=2 stride=2 [convolutional] +batch_normalize=1 filters=32 size=3 stride=1 @@ -44,6 +38,7 @@ size=2 stride=2 [convolutional] +batch_normalize=1 filters=64 size=3 stride=1 @@ -55,6 +50,7 @@ size=2 stride=2 [convolutional] +batch_normalize=1 filters=128 size=3 stride=1 @@ -66,6 +62,7 @@ size=2 stride=2 [convolutional] +batch_normalize=1 filters=256 size=3 stride=1 @@ -77,6 +74,7 @@ size=2 stride=2 [convolutional] +batch_normalize=1 filters=512 size=3 stride=1 @@ -88,6 +86,7 @@ size=2 stride=2 [convolutional] +batch_normalize=1 filters=1024 size=3 stride=1 @@ -96,9 +95,6 @@ activation=leaky [avgpool] -[dropout] -probability=.5 - [connected] output=1000 activation=leaky diff --git a/src/activation_kernels.cu b/src/activation_kernels.cu index 99933c86..3dc3af01 100644 --- a/src/activation_kernels.cu +++ b/src/activation_kernels.cu @@ -15,13 +15,19 @@ __device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(exp(x __device__ float relie_activate_kernel(float x){return x*(x>0);} __device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;} __device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1*x;} -__device__ float tanh_activate_kernel(float x){return (exp(2*x)-1)/(exp(2*x)+1);} +__device__ float tanh_activate_kernel(float x){return (2/(1 + exp(-2*x)) - 1);} __device__ float plse_activate_kernel(float x) { if(x < -4) return .01 * (x + 4); if(x > 4) return .01 * (x - 4) + 1; return .125*x + .5; } +__device__ float stair_activate_kernel(float x) +{ + int n = floor(x); + if (n%2 == 0) return floor(x/2.); + else return (x - n) + floor(x/2.); +} __device__ float linear_gradient_kernel(float x){return 1;} __device__ float logistic_gradient_kernel(float x){return (1-x)*x;} @@ -37,6 +43,11 @@ __device__ float ramp_gradient_kernel(float x){return (x>0)+.1;} __device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1;} __device__ float tanh_gradient_kernel(float x){return 1-x*x;} __device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01 : .125;} +__device__ float stair_gradient_kernel(float x) +{ + if (floor(x) == x) return 0; + return 1; +} __device__ float activate_kernel(float x, ACTIVATION a) { @@ -61,6 +72,8 @@ __device__ float activate_kernel(float x, ACTIVATION a) return tanh_activate_kernel(x); case PLSE: return plse_activate_kernel(x); + case STAIR: + return stair_activate_kernel(x); } return 0; } @@ -88,6 +101,8 @@ __device__ float gradient_kernel(float x, ACTIVATION a) return tanh_gradient_kernel(x); case PLSE: return plse_gradient_kernel(x); + case STAIR: + return stair_gradient_kernel(x); } return 0; } diff --git a/src/activations.c b/src/activations.c index 07e3a459..6b98e1cf 100644 --- a/src/activations.c +++ b/src/activations.c @@ -28,6 +28,8 @@ char *get_activation_string(ACTIVATION a) return "plse"; case LEAKY: return "leaky"; + case STAIR: + return "stair"; default: break; } @@ -46,6 +48,7 @@ ACTIVATION get_activation(char *s) if (strcmp(s, "ramp")==0) return RAMP; if (strcmp(s, "leaky")==0) return LEAKY; if (strcmp(s, "tanh")==0) return TANH; + if (strcmp(s, "stair")==0) return STAIR; fprintf(stderr, "Couldn't find activation function %s, going with ReLU\n", s); return RELU; } @@ -73,6 +76,8 @@ float activate(float x, ACTIVATION a) return tanh_activate(x); case PLSE: return plse_activate(x); + case STAIR: + return stair_activate(x); } return 0; } @@ -108,6 +113,8 @@ float gradient(float x, ACTIVATION a) return tanh_gradient(x); case PLSE: return plse_gradient(x); + case STAIR: + return stair_gradient(x); } return 0; } diff --git a/src/activations.h b/src/activations.h index 78060258..05f7bca5 100644 --- a/src/activations.h +++ b/src/activations.h @@ -4,7 +4,7 @@ #include "math.h" typedef enum{ - LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY + LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR }ACTIVATION; ACTIVATION get_activation(char *s); @@ -19,6 +19,12 @@ void activate_array_ongpu(float *x, int n, ACTIVATION a); void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta); #endif +static inline float stair_activate(float x) +{ + int n = floor(x); + if (n%2 == 0) return floor(x/2.); + else return (x - n) + floor(x/2.); +} static inline float linear_activate(float x){return x;} static inline float logistic_activate(float x){return 1./(1. + exp(-x));} static inline float loggy_activate(float x){return 2./(1. + exp(-x)) - 1;} @@ -42,6 +48,11 @@ static inline float loggy_gradient(float x) float y = (x+1.)/2.; return 2*(1-y)*y; } +static inline float stair_gradient(float x) +{ + if (floor(x) == x) return 0; + return 1; +} static inline float relu_gradient(float x){return (x>0);} static inline float elu_gradient(float x){return (x >= 0) + (x < 0)*(x + 1);} static inline float relie_gradient(float x){return (x>0) ? 1 : .01;} diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c new file mode 100644 index 00000000..6ea40407 --- /dev/null +++ b/src/batchnorm_layer.c @@ -0,0 +1,175 @@ +#include "batchnorm_layer.h" +#include "blas.h" +#include + +layer make_batchnorm_layer(int batch, int w, int h, int c) +{ + fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c); + layer layer = {0}; + layer.type = BATCHNORM; + layer.batch = batch; + layer.h = layer.out_h = h; + layer.w = layer.out_w = w; + layer.c = layer.out_c = c; + layer.output = calloc(h * w * c * batch, sizeof(float)); + layer.delta = calloc(h * w * c * batch, sizeof(float)); + layer.inputs = w*h*c; + layer.outputs = layer.inputs; + + layer.scales = calloc(c, sizeof(float)); + layer.scale_updates = calloc(c, sizeof(float)); + int i; + for(i = 0; i < c; ++i){ + layer.scales[i] = 1; + } + + layer.mean = calloc(c, sizeof(float)); + layer.variance = calloc(c, sizeof(float)); + + layer.rolling_mean = calloc(c, sizeof(float)); + layer.rolling_variance = calloc(c, sizeof(float)); +#ifdef GPU + layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch); + layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch); + + layer.scales_gpu = cuda_make_array(layer.scales, c); + layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c); + + layer.mean_gpu = cuda_make_array(layer.mean, c); + layer.variance_gpu = cuda_make_array(layer.variance, c); + + layer.rolling_mean_gpu = cuda_make_array(layer.mean, c); + layer.rolling_variance_gpu = cuda_make_array(layer.variance, c); + + layer.mean_delta_gpu = cuda_make_array(layer.mean, c); + layer.variance_delta_gpu = cuda_make_array(layer.variance, c); + + layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); + layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); +#endif + return layer; +} + +void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) +{ + int i,b,f; + for(f = 0; f < n; ++f){ + float sum = 0; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; ++i){ + int index = i + size*(f + n*b); + sum += delta[index] * x_norm[index]; + } + } + scale_updates[f] += sum; + } +} + +void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) +{ + + int i,j,k; + for(i = 0; i < filters; ++i){ + mean_delta[i] = 0; + for (j = 0; j < batch; ++j) { + for (k = 0; k < spatial; ++k) { + int index = j*filters*spatial + i*spatial + k; + mean_delta[i] += delta[index]; + } + } + mean_delta[i] *= (-1./sqrt(variance[i] + .00001f)); + } +} +void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) +{ + + int i,j,k; + for(i = 0; i < filters; ++i){ + variance_delta[i] = 0; + for(j = 0; j < batch; ++j){ + for(k = 0; k < spatial; ++k){ + int index = j*filters*spatial + i*spatial + k; + variance_delta[i] += delta[index]*(x[index] - mean[i]); + } + } + variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.)); + } +} +void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) +{ + int f, j, k; + for(j = 0; j < batch; ++j){ + for(f = 0; f < filters; ++f){ + for(k = 0; k < spatial; ++k){ + int index = j*filters*spatial + f*spatial + k; + delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); + } + } + } +} + +void resize_batchnorm_layer(layer *layer, int w, int h) +{ + fprintf(stderr, "Not implemented\n"); +} + +void forward_batchnorm_layer(layer l, network_state state) +{ + if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); + if(l.type == CONNECTED){ + l.out_c = l.outputs; + l.out_h = l.out_w = 1; + } + if(state.train){ + mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean); + variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance); + normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w); + } else { + normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w); + } + scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w); +} + +void backward_batchnorm_layer(const layer layer, network_state state) +{ +} + +#ifdef GPU +void forward_batchnorm_layer_gpu(layer l, network_state state) +{ + if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); + if(l.type == CONNECTED){ + l.out_c = l.outputs; + l.out_h = l.out_w = 1; + } + if (state.train) { + fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu); + fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu); + + scal_ongpu(l.out_c, .95, l.rolling_mean_gpu, 1); + axpy_ongpu(l.out_c, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1); + scal_ongpu(l.out_c, .95, l.rolling_variance_gpu, 1); + axpy_ongpu(l.out_c, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1); + + copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); + normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); + copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); + } else { + normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); + } + + scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); +} + +void backward_batchnorm_layer_gpu(const layer l, network_state state) +{ + backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu); + + scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); + + fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu); + fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu); + normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); + if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1); +} +#endif diff --git a/src/batchnorm_layer.h b/src/batchnorm_layer.h new file mode 100644 index 00000000..61810b68 --- /dev/null +++ b/src/batchnorm_layer.h @@ -0,0 +1,17 @@ +#ifndef BATCHNORM_LAYER_H +#define BATCHNORM_LAYER_H + +#include "image.h" +#include "layer.h" +#include "network.h" + +layer make_batchnorm_layer(int batch, int w, int h, int c); +void forward_batchnorm_layer(layer l, network_state state); +void backward_batchnorm_layer(layer l, network_state state); + +#ifdef GPU +void forward_batchnorm_layer_gpu(layer l, network_state state); +void backward_batchnorm_layer_gpu(layer l, network_state state); +#endif + +#endif diff --git a/src/blas.h b/src/blas.h index 030ef668..47d930c3 100644 --- a/src/blas.h +++ b/src/blas.h @@ -7,6 +7,7 @@ void time_random_matrix(int TA, int TB, int m, int k, int n); void test_blas(); void const_cpu(int N, float ALPHA, float *X, int INCX); +void constrain_ongpu(int N, float ALPHA, float * X, int INCX); void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY); void mul_cpu(int N, float *X, int INCX, float *Y, int INCY); @@ -58,8 +59,15 @@ void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, void scale_bias_gpu(float *output, float *biases, int batch, int n, int size); void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates); void scale_bias_gpu(float *output, float *biases, int batch, int n, int size); +void add_bias_gpu(float *output, float *biases, int batch, int n, int size); +void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size); void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error); void l2_gpu(int n, float *pred, float *truth, float *delta, float *error); +void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc); +void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c); +void mult_add_into_gpu(int num, float *a, float *b, float *c); + + #endif #endif diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu index 98366f82..ac537d88 100644 --- a/src/blas_kernels.cu +++ b/src/blas_kernels.cu @@ -9,6 +9,137 @@ extern "C" { #include "utils.h" } +__global__ void scale_bias_kernel(float *output, float *biases, int n, int size) +{ + int offset = blockIdx.x * blockDim.x + threadIdx.x; + int filter = blockIdx.y; + int batch = blockIdx.z; + + if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter]; +} + +void scale_bias_gpu(float *output, float *biases, int batch, int n, int size) +{ + dim3 dimGrid((size-1)/BLOCK + 1, n, batch); + dim3 dimBlock(BLOCK, 1, 1); + + scale_bias_kernel<<>>(output, biases, n, size); + check_error(cudaPeekAtLastError()); +} + +__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) +{ + __shared__ float part[BLOCK]; + int i,b; + int filter = blockIdx.x; + int p = threadIdx.x; + float sum = 0; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; i += BLOCK){ + int index = p + i + size*(filter + n*b); + sum += (p+i < size) ? delta[index]*x_norm[index] : 0; + } + } + part[p] = sum; + __syncthreads(); + if (p == 0) { + for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i]; + } +} + +void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) +{ + backward_scale_kernel<<>>(x_norm, delta, batch, n, size, scale_updates); + check_error(cudaPeekAtLastError()); +} + +__global__ void add_bias_kernel(float *output, float *biases, int n, int size) +{ + int offset = blockIdx.x * blockDim.x + threadIdx.x; + int filter = blockIdx.y; + int batch = blockIdx.z; + + if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter]; +} + +void add_bias_gpu(float *output, float *biases, int batch, int n, int size) +{ + dim3 dimGrid((size-1)/BLOCK + 1, n, batch); + dim3 dimBlock(BLOCK, 1, 1); + + add_bias_kernel<<>>(output, biases, n, size); + check_error(cudaPeekAtLastError()); +} + +__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size) +{ + __shared__ float part[BLOCK]; + int i,b; + int filter = blockIdx.x; + int p = threadIdx.x; + float sum = 0; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; i += BLOCK){ + int index = p + i + size*(filter + n*b); + sum += (p+i < size) ? delta[index] : 0; + } + } + part[p] = sum; + __syncthreads(); + if (p == 0) { + for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; + } +} + +/* +__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta) +{ + int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + int f1 = index / n; + int f2 = index % n; + if (f2 <= f1) return; + + float sum = 0; + float norm1 = 0; + float norm2 = 0; + int b, i; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; ++i){ + int i1 = b * size * n + f1 * size + i; + int i2 = b * size * n + f2 * size + i; + sum += output[i1] * output[i2]; + norm1 += output[i1] * output[i1]; + norm2 += output[i2] * output[i2]; + } + } + norm1 = sqrt(norm1); + norm2 = sqrt(norm2); + float norm = norm1 * norm2; + sum = sum / norm; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; ++i){ + int i1 = b * size * n + f1 * size + i; + int i2 = b * size * n + f2 * size + i; + delta[i1] += - scale * sum * output[i2] / norm; + delta[i2] += - scale * sum * output[i1] / norm; + } + } +} + +void dot_error_gpu(layer l) +{ + dot_kernel<<>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu); + check_error(cudaPeekAtLastError()); +} +*/ + +void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) +{ + backward_bias_kernel<<>>(bias_updates, delta, batch, n, size); + check_error(cudaPeekAtLastError()); +} + + __global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial) { int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; @@ -199,6 +330,12 @@ __global__ void const_kernel(int N, float ALPHA, float *X, int INCX) if(i < N) X[i*INCX] = ALPHA; } +__global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) X[i*INCX] = min(ALPHA, max(-ALPHA, X[i*INCX])); +} + __global__ void scal_kernel(int N, float ALPHA, float *X, int INCX) { int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; @@ -363,6 +500,13 @@ extern "C" void const_ongpu(int N, float ALPHA, float * X, int INCX) check_error(cudaPeekAtLastError()); } +extern "C" void constrain_ongpu(int N, float ALPHA, float * X, int INCX) +{ + constrain_kernel<<>>(N, ALPHA, X, INCX); + check_error(cudaPeekAtLastError()); +} + + extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX) { scal_kernel<<>>(N, ALPHA, X, INCX); @@ -448,3 +592,48 @@ extern "C" void l2_gpu(int n, float *pred, float *truth, float *delta, float *er l2_kernel<<>>(n, pred, truth, delta, error); check_error(cudaPeekAtLastError()); } + + +__global__ void weighted_sum_kernel(int n, float *a, float *b, float *s, float *c) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); + } +} + +extern "C" void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c) +{ + weighted_sum_kernel<<>>(num, a, b, s, c); + check_error(cudaPeekAtLastError()); +} + +__global__ void weighted_delta_kernel(int n, float *a, float *b, float *s, float *da, float *db, float *ds, float *dc) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + if(da) da[i] += dc[i] * s[i]; + db[i] += dc[i] * (1-s[i]); + ds[i] += dc[i] * a[i] + dc[i] * -b[i]; + } +} + +extern "C" void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc) +{ + weighted_delta_kernel<<>>(num, a, b, s, da, db, ds, dc); + check_error(cudaPeekAtLastError()); +} + +__global__ void mult_add_into_kernel(int n, float *a, float *b, float *c) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + c[i] += a[i]*b[i]; + } +} + +extern "C" void mult_add_into_gpu(int num, float *a, float *b, float *c) +{ + mult_add_into_kernel<<>>(num, a, b, c); + check_error(cudaPeekAtLastError()); +} diff --git a/src/classifier.c b/src/classifier.c index 2e974a52..7060c5e5 100644 --- a/src/classifier.c +++ b/src/classifier.c @@ -3,6 +3,7 @@ #include "parser.h" #include "option_list.h" #include "blas.h" +#include "classifier.h" #include #ifdef OPENCV @@ -49,7 +50,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile) load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); - int imgs = 1024; + int imgs = net.batch; list *options = read_data_cfg(datacfg); @@ -72,7 +73,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile) args.w = net.w; args.h = net.h; - args.min = net.w; + args.min = net.min_crop; args.max = net.max_crop; args.size = net.w; diff --git a/src/classifier.h b/src/classifier.h new file mode 100644 index 00000000..3c89f49c --- /dev/null +++ b/src/classifier.h @@ -0,0 +1,2 @@ + +list *read_data_cfg(char *filename); diff --git a/src/connected_layer.c b/src/connected_layer.c index df78e67b..f20aa93c 100644 --- a/src/connected_layer.c +++ b/src/connected_layer.c @@ -1,4 +1,5 @@ #include "connected_layer.h" +#include "batchnorm_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" @@ -19,6 +20,12 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT l.outputs = outputs; l.batch=batch; l.batch_normalize = batch_normalize; + l.h = 1; + l.w = 1; + l.c = inputs; + l.out_h = 1; + l.out_w = 1; + l.out_c = outputs; l.output = calloc(batch*outputs, sizeof(float)); l.delta = calloc(batch*outputs, sizeof(float)); @@ -29,7 +36,6 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT l.weights = calloc(outputs*inputs, sizeof(float)); l.biases = calloc(outputs, sizeof(float)); - //float scale = 1./sqrt(inputs); float scale = sqrt(2./inputs); for(i = 0; i < outputs*inputs; ++i){ @@ -37,7 +43,7 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT } for(i = 0; i < outputs; ++i){ - l.biases[i] = scale; + l.biases[i] = 0; } if(batch_normalize){ @@ -176,6 +182,19 @@ void backward_connected_layer(connected_layer l, network_state state) if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); } + +void denormalize_connected_layer(layer l) +{ + int i, j; + for(i = 0; i < l.outputs; ++i){ + float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); + for(j = 0; j < l.inputs; ++j){ + l.weights[i*l.inputs + j] *= scale; + } + l.biases[i] -= l.rolling_mean[i] * scale; + } +} + #ifdef GPU void pull_connected_layer(connected_layer l) @@ -223,11 +242,7 @@ void forward_connected_layer_gpu(connected_layer l, network_state state) { int i; fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); - /* - for(i = 0; i < l.batch; ++i){ - copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1); - } - */ + int m = l.batch; int k = l.inputs; int n = l.outputs; @@ -236,52 +251,26 @@ void forward_connected_layer_gpu(connected_layer l, network_state state) float * c = l.output_gpu; gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); if(l.batch_normalize){ - if(state.train){ - fast_mean_gpu(l.output_gpu, l.batch, l.outputs, 1, l.mean_gpu); - fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.outputs, 1, l.variance_gpu); - - scal_ongpu(l.outputs, .95, l.rolling_mean_gpu, 1); - axpy_ongpu(l.outputs, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1); - scal_ongpu(l.outputs, .95, l.rolling_variance_gpu, 1); - axpy_ongpu(l.outputs, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1); - - copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); - normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1); - copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); - } else { - normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.outputs, 1); - } - - scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.outputs, 1); + forward_batchnorm_layer_gpu(l, state); } for(i = 0; i < l.batch; ++i){ axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1); } activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); - /* - cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); - float avg = mean_array(l.output, l.outputs*l.batch); - printf("%f\n", avg); - */ } void backward_connected_layer_gpu(connected_layer l, network_state state) { int i; + constrain_ongpu(l.outputs*l.batch, 5, l.delta_gpu, 1); gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); for(i = 0; i < l.batch; ++i){ axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1); } if(l.batch_normalize){ - backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.outputs, 1, l.scale_updates_gpu); - - scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.outputs, 1); - - fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.mean_delta_gpu); - fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.variance_delta_gpu); - normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.outputs, 1, l.delta_gpu); + backward_batchnorm_layer_gpu(l, state); } int m = l.outputs; diff --git a/src/connected_layer.h b/src/connected_layer.h index 56bd1c38..affcaaf4 100644 --- a/src/connected_layer.h +++ b/src/connected_layer.h @@ -12,6 +12,7 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT void forward_connected_layer(connected_layer layer, network_state state); void backward_connected_layer(connected_layer layer, network_state state); void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay); +void denormalize_connected_layer(layer l); #ifdef GPU void forward_connected_layer_gpu(connected_layer layer, network_state state); diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu index 3dc125f4..62d60795 100644 --- a/src/convolutional_kernels.cu +++ b/src/convolutional_kernels.cu @@ -4,6 +4,7 @@ extern "C" { #include "convolutional_layer.h" +#include "batchnorm_layer.h" #include "gemm.h" #include "blas.h" #include "im2col.h" @@ -12,6 +13,41 @@ extern "C" { #include "cuda.h" } +__global__ void binarize_kernel(float *x, int n, float *binary) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i >= n) return; + binary[i] = (x[i] > 0) ? 1 : -1; +} + +void binarize_gpu(float *x, int n, float *binary) +{ + binarize_kernel<<>>(x, n, binary); + check_error(cudaPeekAtLastError()); +} + +__global__ void binarize_input_kernel(float *input, int n, int size, float *binary) +{ + int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (s >= size) return; + int i = 0; + float mean = 0; + for(i = 0; i < n; ++i){ + mean += abs(input[i*size + s]); + } + mean = mean / n; + for(i = 0; i < n; ++i){ + binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; + } +} + +void binarize_input_gpu(float *input, int n, int size, float *binary) +{ + binarize_input_kernel<<>>(input, n, size, binary); + check_error(cudaPeekAtLastError()); +} + + __global__ void binarize_filters_kernel(float *filters, int n, int size, float *binary) { int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; @@ -27,140 +63,12 @@ __global__ void binarize_filters_kernel(float *filters, int n, int size, float * } } -__global__ void scale_bias_kernel(float *output, float *biases, int n, int size) -{ - int offset = blockIdx.x * blockDim.x + threadIdx.x; - int filter = blockIdx.y; - int batch = blockIdx.z; - - if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter]; -} - -void scale_bias_gpu(float *output, float *biases, int batch, int n, int size) -{ - dim3 dimGrid((size-1)/BLOCK + 1, n, batch); - dim3 dimBlock(BLOCK, 1, 1); - - scale_bias_kernel<<>>(output, biases, n, size); - check_error(cudaPeekAtLastError()); -} - -__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) -{ - __shared__ float part[BLOCK]; - int i,b; - int filter = blockIdx.x; - int p = threadIdx.x; - float sum = 0; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; i += BLOCK){ - int index = p + i + size*(filter + n*b); - sum += (p+i < size) ? delta[index]*x_norm[index] : 0; - } - } - part[p] = sum; - __syncthreads(); - if (p == 0) { - for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i]; - } -} - void binarize_filters_gpu(float *filters, int n, int size, float *binary) { binarize_filters_kernel<<>>(filters, n, size, binary); check_error(cudaPeekAtLastError()); } -void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) -{ - backward_scale_kernel<<>>(x_norm, delta, batch, n, size, scale_updates); - check_error(cudaPeekAtLastError()); -} - -__global__ void add_bias_kernel(float *output, float *biases, int n, int size) -{ - int offset = blockIdx.x * blockDim.x + threadIdx.x; - int filter = blockIdx.y; - int batch = blockIdx.z; - - if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter]; -} - -void add_bias_gpu(float *output, float *biases, int batch, int n, int size) -{ - dim3 dimGrid((size-1)/BLOCK + 1, n, batch); - dim3 dimBlock(BLOCK, 1, 1); - - add_bias_kernel<<>>(output, biases, n, size); - check_error(cudaPeekAtLastError()); -} - -__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size) -{ - __shared__ float part[BLOCK]; - int i,b; - int filter = blockIdx.x; - int p = threadIdx.x; - float sum = 0; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; i += BLOCK){ - int index = p + i + size*(filter + n*b); - sum += (p+i < size) ? delta[index] : 0; - } - } - part[p] = sum; - __syncthreads(); - if (p == 0) { - for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; - } -} - -__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta) -{ - int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - int f1 = index / n; - int f2 = index % n; - if (f2 <= f1) return; - - float sum = 0; - float norm1 = 0; - float norm2 = 0; - int b, i; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; ++i){ - int i1 = b * size * n + f1 * size + i; - int i2 = b * size * n + f2 * size + i; - sum += output[i1] * output[i2]; - norm1 += output[i1] * output[i1]; - norm2 += output[i2] * output[i2]; - } - } - norm1 = sqrt(norm1); - norm2 = sqrt(norm2); - float norm = norm1 * norm2; - sum = sum / norm; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; ++i){ - int i1 = b * size * n + f1 * size + i; - int i2 = b * size * n + f2 * size + i; - delta[i1] += - scale * sum * output[i2] / norm; - delta[i2] += - scale * sum * output[i1] / norm; - } - } -} - -void dot_error_gpu(layer l) -{ - dot_kernel<<>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu); - check_error(cudaPeekAtLastError()); -} - -void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) -{ - backward_bias_kernel<<>>(bias_updates, delta, batch, n, size); - check_error(cudaPeekAtLastError()); -} - void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) { int i; @@ -175,6 +83,16 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) swap_binary(&l); } + if(l.xnor){ + binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu); + //binarize_gpu(l.filters_gpu, l.n*l.c*l.size*l.size, l.binary_filters_gpu); + swap_binary(&l); + for(i = 0; i < l.batch; ++i){ + binarize_input_gpu(state.input + i*l.inputs, l.c, l.h*l.w, l.binary_input_gpu + i*l.inputs); + } + state.input = l.binary_input_gpu; + } + for(i = 0; i < l.batch; ++i){ im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu); float * a = l.filters_gpu; @@ -184,29 +102,13 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) } if (l.batch_normalize) { - if (state.train) { - fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.mean_gpu); - fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.variance_gpu); - - scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1); - axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1); - scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1); - axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1); - - copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); - normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w); - copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); - } else { - normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.n, l.out_h*l.out_w); - } - - scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w); + forward_batchnorm_layer_gpu(l, state); } add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n); activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation); - if(l.dot > 0) dot_error_gpu(l); - if(l.binary) swap_binary(&l); + //if(l.dot > 0) dot_error_gpu(l); + if(l.binary || l.xnor) swap_binary(&l); } void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) @@ -222,15 +124,10 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k); if(l.batch_normalize){ - backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.scale_updates_gpu); - - scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w); - - fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.mean_delta_gpu); - fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.variance_delta_gpu); - normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu); + backward_batchnorm_layer_gpu(l, state); } + if(l.xnor) state.input = l.binary_input_gpu; for(i = 0; i < l.batch; ++i){ float * a = l.delta_gpu; float * b = l.col_image_gpu; @@ -240,7 +137,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); if(state.delta){ - if(l.binary) swap_binary(&l); + if(l.binary || l.xnor) swap_binary(&l); float * a = l.filters_gpu; float * b = l.delta_gpu; float * c = l.col_image_gpu; @@ -248,7 +145,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); - if(l.binary) swap_binary(&l); + if(l.binary || l.xnor) swap_binary(&l); } } } diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c index cdc8bd38..d76dfcd8 100644 --- a/src/convolutional_layer.c +++ b/src/convolutional_layer.c @@ -1,5 +1,6 @@ #include "convolutional_layer.h" #include "utils.h" +#include "batchnorm_layer.h" #include "im2col.h" #include "col2im.h" #include "blas.h" @@ -87,65 +88,7 @@ image get_convolutional_delta(convolutional_layer l) return float_to_image(w,h,c,l.delta); } -void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) -{ - int i,b,f; - for(f = 0; f < n; ++f){ - float sum = 0; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; ++i){ - int index = i + size*(f + n*b); - sum += delta[index] * x_norm[index]; - } - } - scale_updates[f] += sum; - } -} - -void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) -{ - - int i,j,k; - for(i = 0; i < filters; ++i){ - mean_delta[i] = 0; - for (j = 0; j < batch; ++j) { - for (k = 0; k < spatial; ++k) { - int index = j*filters*spatial + i*spatial + k; - mean_delta[i] += delta[index]; - } - } - mean_delta[i] *= (-1./sqrt(variance[i] + .00001f)); - } -} -void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) -{ - - int i,j,k; - for(i = 0; i < filters; ++i){ - variance_delta[i] = 0; - for(j = 0; j < batch; ++j){ - for(k = 0; k < spatial; ++k){ - int index = j*filters*spatial + i*spatial + k; - variance_delta[i] += delta[index]*(x[index] - mean[i]); - } - } - variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.)); - } -} -void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) -{ - int f, j, k; - for(j = 0; j < batch; ++j){ - for(f = 0; f < filters; ++f){ - for(k = 0; k < spatial; ++k){ - int index = j*filters*spatial + f*spatial + k; - delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); - } - } - } -} - -convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary) +convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor) { int i; convolutional_layer l = {0}; @@ -220,6 +163,11 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int if(binary){ l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size); } + if(xnor){ + l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size); + l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); + } + l.xnor = xnor; if(batch_normalize){ l.mean_gpu = cuda_make_array(l.mean, n); @@ -256,7 +204,7 @@ void denormalize_convolutional_layer(convolutional_layer l) void test_convolutional_layer() { - convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0); + convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0); l.batch_normalize = 1; float data[] = {1,1,1,1,1, 1,1,1,1,1, @@ -397,14 +345,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state) } if(l.batch_normalize){ - if(state.train){ - mean_cpu(l.output, l.batch, l.n, l.out_h*l.out_w, l.mean); - variance_cpu(l.output, l.mean, l.batch, l.n, l.out_h*l.out_w, l.variance); - normalize_cpu(l.output, l.mean, l.variance, l.batch, l.n, l.out_h*l.out_w); - } else { - normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.n, l.out_h*l.out_w); - } - scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w); + forward_batchnorm_layer(l, state); } add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h index d0c3d46a..3d52b229 100644 --- a/src/convolutional_layer.h +++ b/src/convolutional_layer.h @@ -21,7 +21,7 @@ void add_bias_gpu(float *output, float *biases, int batch, int n, int size); void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size); #endif -convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization, int binary); +convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization, int binary, int xnor); void denormalize_convolutional_layer(convolutional_layer l); void resize_convolutional_layer(convolutional_layer *layer, int w, int h); void forward_convolutional_layer(const convolutional_layer layer, network_state state); diff --git a/src/crnn_layer.c b/src/crnn_layer.c index ed65665f..5d5fa636 100644 --- a/src/crnn_layer.c +++ b/src/crnn_layer.c @@ -48,17 +48,17 @@ layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int ou l.input_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); - *(l.input_layer) = make_convolutional_layer(batch*steps, h, w, c, hidden_filters, 3, 1, 1, activation, batch_normalize, 0); + *(l.input_layer) = make_convolutional_layer(batch*steps, h, w, c, hidden_filters, 3, 1, 1, activation, batch_normalize, 0, 0); l.input_layer->batch = batch; l.self_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); - *(l.self_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, hidden_filters, 3, 1, 1, activation, batch_normalize, 0); + *(l.self_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, hidden_filters, 3, 1, 1, activation, batch_normalize, 0, 0); l.self_layer->batch = batch; l.output_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); - *(l.output_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, output_filters, 3, 1, 1, activation, batch_normalize, 0); + *(l.output_layer) = make_convolutional_layer(batch*steps, h, w, hidden_filters, output_filters, 3, 1, 1, activation, batch_normalize, 0, 0); l.output_layer->batch = batch; l.output = l.output_layer->output; diff --git a/src/darknet.c b/src/darknet.c index 0865c61a..f2982acd 100644 --- a/src/darknet.c +++ b/src/darknet.c @@ -6,6 +6,7 @@ #include "utils.h" #include "cuda.h" #include "blas.h" +#include "connected_layer.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" @@ -182,6 +183,25 @@ void denormalize_net(char *cfgfile, char *weightfile, char *outfile) denormalize_convolutional_layer(l); net.layers[i].batch_normalize=0; } + if (l.type == CONNECTED && l.batch_normalize) { + denormalize_connected_layer(l); + net.layers[i].batch_normalize=0; + } + if (l.type == GRU && l.batch_normalize) { + denormalize_connected_layer(*l.input_z_layer); + denormalize_connected_layer(*l.input_r_layer); + denormalize_connected_layer(*l.input_h_layer); + denormalize_connected_layer(*l.state_z_layer); + denormalize_connected_layer(*l.state_r_layer); + denormalize_connected_layer(*l.state_h_layer); + l.input_z_layer->batch_normalize = 0; + l.input_r_layer->batch_normalize = 0; + l.input_h_layer->batch_normalize = 0; + l.state_z_layer->batch_normalize = 0; + l.state_r_layer->batch_normalize = 0; + l.state_h_layer->batch_normalize = 0; + net.layers[i].batch_normalize=0; + } } save_weights(net, outfile); } diff --git a/src/data.c b/src/data.c index 4d52d11a..b0368eeb 100644 --- a/src/data.c +++ b/src/data.c @@ -22,6 +22,19 @@ list *get_paths(char *filename) return lines; } +char **get_random_paths_indexes(char **paths, int n, int m, int *indexes) +{ + char **random_paths = calloc(n, sizeof(char*)); + int i; + for(i = 0; i < n; ++i){ + int index = rand_r(&data_seed)%m; + indexes[i] = index; + random_paths[i] = paths[index]; + if(i == 0) printf("%s\n", paths[index]); + } + return random_paths; +} + char **get_random_paths(char **paths, int n, int m) { char **random_paths = calloc(n, sizeof(char*)); @@ -364,7 +377,7 @@ void fill_truth_captcha(char *path, int n, float *truth) data load_data_captcha(char **paths, int n, int m, int k, int w, int h) { if(m) paths = get_random_paths(paths, n, m); - data d; + data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.y = make_matrix(n, k*NUMCHARS); @@ -379,7 +392,7 @@ data load_data_captcha(char **paths, int n, int m, int k, int w, int h) data load_data_captcha_encode(char **paths, int n, int m, int w, int h) { if(m) paths = get_random_paths(paths, n, m); - data d; + data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.X.cols = 17100; @@ -449,6 +462,9 @@ char **get_labels(char *filename) void free_data(data d) { + if(d.indexes){ + free(d.indexes); + } if(!d.shallow){ free_matrix(d.X); free_matrix(d.y); @@ -462,7 +478,7 @@ data load_data_region(int n, char **paths, int m, int w, int h, int size, int cl { char **random_paths = get_random_paths(paths, n, m); int i; - data d; + data d = {0}; d.shallow = 0; d.X.rows = n; @@ -514,7 +530,7 @@ data load_data_compare(int n, char **paths, int m, int classes, int w, int h) { if(m) paths = get_random_paths(paths, 2*n, m); int i,j; - data d; + data d = {0}; d.shallow = 0; d.X.rows = n; @@ -581,7 +597,7 @@ data load_data_swag(char **paths, int n, int classes, float jitter) int h = orig.h; int w = orig.w; - data d; + data d = {0}; d.shallow = 0; d.w = w; d.h = h; @@ -629,7 +645,7 @@ data load_data_detection(int n, char **paths, int m, int classes, int w, int h, { char **random_paths = get_random_paths(paths, n, m); int i; - data d; + data d = {0}; d.shallow = 0; d.X.rows = n; @@ -698,6 +714,8 @@ void *load_thread(void *ptr) *a.d = load_data(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); } else if (a.type == CLASSIFICATION_DATA){ *a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size); + } else if (a.type == STUDY_DATA){ + *a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size); } else if (a.type == DETECTION_DATA){ *a.d = load_data_detection(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background); } else if (a.type == WRITING_DATA){ @@ -732,7 +750,7 @@ data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int { if(m) paths = get_random_paths(paths, n, m); char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); - data d; + data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.y = load_image_paths_gray(replace_paths, n, out_w, out_h); @@ -746,7 +764,7 @@ data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int data load_data(char **paths, int n, int m, char **labels, int k, int w, int h) { if(m) paths = get_random_paths(paths, n, m); - data d; + data d = {0}; d.shallow = 0; d.X = load_image_paths(paths, n, w, h); d.y = load_labels_paths(paths, n, labels, k); @@ -754,10 +772,22 @@ data load_data(char **paths, int n, int m, char **labels, int k, int w, int h) return d; } +data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size) +{ + data d = {0}; + d.indexes = calloc(n, sizeof(int)); + if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes); + d.shallow = 0; + d.X = load_image_cropped_paths(paths, n, min, max, size); + d.y = load_labels_paths(paths, n, labels, k); + if(m) free(paths); + return d; +} + data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size) { if(m) paths = get_random_paths(paths, n, m); - data d; + data d = {0}; d.shallow = 0; d.X = load_image_cropped_paths(paths, n, min, max, size); d.y = load_labels_paths(paths, n, labels, k); @@ -796,7 +826,7 @@ matrix concat_matrix(matrix m1, matrix m2) data concat_data(data d1, data d2) { - data d; + data d = {0}; d.shallow = 1; d.X = concat_matrix(d1.X, d2.X); d.y = concat_matrix(d1.y, d2.y); @@ -805,7 +835,7 @@ data concat_data(data d1, data d2) data load_categorical_data_csv(char *filename, int target, int k) { - data d; + data d = {0}; d.shallow = 0; matrix X = csv_to_matrix(filename); float *truth_1d = pop_column(&X, target); @@ -822,7 +852,7 @@ data load_categorical_data_csv(char *filename, int target, int k) data load_cifar10_data(char *filename) { - data d; + data d = {0}; d.shallow = 0; long i,j; matrix X = make_matrix(10000, 3072); @@ -882,7 +912,7 @@ void smooth_data(data d) data load_all_cifar10() { - data d; + data d = {0}; d.shallow = 0; int i,j,b; matrix X = make_matrix(50000, 3072); @@ -910,7 +940,7 @@ data load_all_cifar10() //normalize_data_rows(d); //translate_data_rows(d, -128); scale_data_rows(d, 1./255); - // smooth_data(d); + smooth_data(d); return d; } @@ -949,7 +979,7 @@ data load_go(char *filename) X = resize_matrix(X, count); y = resize_matrix(y, count); - data d; + data d = {0}; d.shallow = 0; d.X = X; d.y = y; diff --git a/src/data.h b/src/data.h index f928ade7..6befeea5 100644 --- a/src/data.h +++ b/src/data.h @@ -23,11 +23,12 @@ typedef struct{ int w, h; matrix X; matrix y; + int *indexes; int shallow; } data; typedef enum { - CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA + CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA } data_type; typedef struct load_args{ @@ -70,6 +71,7 @@ data load_data(char **paths, int n, int m, char **labels, int k, int w, int h); data load_data_detection(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background); data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size); data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size); +data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size); data load_go(char *filename); box_label *read_boxes(char *filename, int *n); @@ -90,5 +92,6 @@ void translate_data_rows(data d, float s); void randomize_data(data d); data *split_data(data d, int part, int total); data concat_data(data d1, data d2); +void fill_truth(char *path, char **labels, int k, float *truth); #endif diff --git a/src/go.c b/src/go.c index 8d0cf520..7883ed58 100644 --- a/src/go.c +++ b/src/go.c @@ -98,6 +98,7 @@ void random_go_moves(moves m, float *boards, float *labels, int n) int col = b[1]; labels[col + 19*(row + i*19)] = 1; string_to_board(b+2, boards+i*19*19); + boards[col + 19*(row + i*19)] = 0; int flip = rand()%2; int rotate = rand()%4; @@ -132,6 +133,7 @@ void train_go(char *cfgfile, char *weightfile) float *board = calloc(19*19*net.batch, sizeof(float)); float *move = calloc(19*19*net.batch, sizeof(float)); moves m = load_go_moves("/home/pjreddie/go.train"); + //moves m = load_go_moves("games.txt"); int N = m.n; int epoch = (*net.seen)/N; @@ -337,6 +339,90 @@ int legal_go(float *b, char *ko, int p, int r, int c) return 1; } +int generate_move(network net, int player, float *board, int multi, float thresh, float temp, char *ko, int print) +{ + int i, j; + for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; + + float move[361]; + if (player < 0) flip_board(board); + predict_move(net, board, move, multi); + if (player < 0) flip_board(board); + + + for(i = 0; i < 19; ++i){ + for(j = 0; j < 19; ++j){ + if (!legal_go(board, ko, player, i, j)) move[i*19 + j] = 0; + } + } + + int indexes[nind]; + top_k(move, 19*19, nind, indexes); + if(thresh > move[indexes[0]]) thresh = move[indexes[nind-1]]; + + for(i = 0; i < 19; ++i){ + for(j = 0; j < 19; ++j){ + if (move[i*19 + j] < thresh) move[i*19 + j] = 0; + } + } + + + int max = max_index(move, 19*19); + int row = max / 19; + int col = max % 19; + int index = sample_array(move, 19*19); + + if(print){ + top_k(move, 19*19, nind, indexes); + for(i = 0; i < nind; ++i){ + if (!move[indexes[i]]) indexes[i] = -1; + } + print_board(board, player, indexes); + for(i = 0; i < nind; ++i){ + fprintf(stderr, "%d: %f\n", i+1, move[indexes[i]]); + } + } + + if(suicide_go(board, player, row, col)){ + return -1; + } + if(suicide_go(board, player, index/19, index%19)) index = max; + return index; +} + +void valid_go(char *cfgfile, char *weightfile, int multi) +{ + data_seed = time(0); + srand(time(0)); + char *base = basecfg(cfgfile); + printf("%s\n", base); + network net = parse_network_cfg(cfgfile); + if(weightfile){ + load_weights(&net, weightfile); + } + set_batch_network(&net, 1); + printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); + + float *board = calloc(19*19, sizeof(float)); + float *move = calloc(19*19, sizeof(float)); + moves m = load_go_moves("/home/pjreddie/backup/go.test"); + + int N = m.n; + int i; + int correct = 0; + for(i = 0; i = 8) ++col; printf("=%s %c%d\n\n", ids, 'A' + col, row); + print_board(board, 1, 0); } + } else if (!strcmp(buff, "p")){ - print_board(board, 1, 0); + //print_board(board, 1, 0); } else if (!strcmp(buff, "final_status_list")){ char type[256]; scanf("%s", type); @@ -479,7 +555,30 @@ void engine_go(char *filename, char *weightfile, int multi) char *line = fgetl(stdin); free(line); if(type[0] == 'd' || type[0] == 'D'){ - printf("=%s \n\n", ids); + FILE *f = fopen("game.txt", "w"); + int i, j; + int count = 2; + fprintf(f, "boardsize 19\n"); + fprintf(f, "clear_board\n"); + for(j = 0; j < 19; ++j){ + for(i = 0; i < 19; ++i){ + if(board[j*19 + i] == 1) fprintf(f, "play black %c%d\n", 'A'+i+(i>=8), 19-j); + if(board[j*19 + i] == -1) fprintf(f, "play white %c%d\n", 'A'+i+(i>=8), 19-j); + if(board[j*19 + i]) ++count; + } + } + fprintf(f, "final_status_list dead\n"); + fclose(f); + FILE *p = popen("./gnugo --mode gtp < game.txt", "r"); + for(i = 0; i < count; ++i){ + free(fgetl(p)); + free(fgetl(p)); + } + char *l = 0; + while((l = fgetl(p))){ + printf("%s\n", l); + free(l); + } } else { printf("?%s unknown command\n\n", ids); } @@ -588,17 +687,118 @@ void test_go(char *cfg, char *weights, int multi) } } -void boards_go() +float score_game(float *board) { - moves m = load_go_moves("/home/pjreddie/go.train"); - int i; - float board[361]; - for(i = 0; i < 10; ++i){ - printf("%d %d\n", m.data[i][0], m.data[i][1]); - string_to_board(m.data[i]+2, board); - print_board(board, 1, 0); + FILE *f = fopen("game.txt", "w"); + int i, j; + int count = 3; + fprintf(f, "komi 6.5\n"); + fprintf(f, "boardsize 19\n"); + fprintf(f, "clear_board\n"); + for(j = 0; j < 19; ++j){ + for(i = 0; i < 19; ++i){ + if(board[j*19 + i] == 1) fprintf(f, "play black %c%d\n", 'A'+i+(i>=8), 19-j); + if(board[j*19 + i] == -1) fprintf(f, "play white %c%d\n", 'A'+i+(i>=8), 19-j); + if(board[j*19 + i]) ++count; + } + } + fprintf(f, "final_score\n"); + fclose(f); + FILE *p = popen("./gnugo --mode gtp < game.txt", "r"); + for(i = 0; i < count; ++i){ + free(fgetl(p)); + free(fgetl(p)); + } + char *l = 0; + float score = 0; + char player = 0; + while((l = fgetl(p))){ + fprintf(stderr, "%s \t", l); + int n = sscanf(l, "= %c+%f", &player, &score); + free(l); + if (n == 2) break; + } + if(player == 'W') score = -score; + pclose(p); + return score; +} + +void self_go(char *filename, char *weightfile, char *f2, char *w2, int multi) +{ + network net = parse_network_cfg(filename); + if(weightfile){ + load_weights(&net, weightfile); } + network net2 = net; + if(f2){ + net2 = parse_network_cfg(f2); + if(w2){ + load_weights(&net2, w2); + } + } + srand(time(0)); + char boards[300][93]; + int count = 0; + set_batch_network(&net, 1); + set_batch_network(&net2, 1); + float *board = calloc(19*19, sizeof(float)); + char *one = calloc(91, sizeof(char)); + char *two = calloc(91, sizeof(char)); + int done = 0; + int player = 1; + int p1 = 0; + int p2 = 0; + int total = 0; + while(1){ + if (done || count >= 300){ + float score = score_game(board); + int i = (score > 0)? 0 : 1; + if((score > 0) == (total%2==0)) ++p1; + else ++p2; + ++total; + fprintf(stderr, "Total: %d, Player 1: %f, Player 2: %f\n", total, (float)p1/total, (float)p2/total); + int j; + for(; i < count; i += 2){ + for(j = 0; j < 93; ++j){ + printf("%c", boards[i][j]); + } + printf("\n"); + } + memset(board, 0, 19*19*sizeof(float)); + player = 1; + done = 0; + count = 0; + fflush(stdout); + fflush(stderr); + } + //print_board(board, 1, 0); + //sleep(1); + network use = ((total%2==0) == (player==1)) ? net : net2; + int index = generate_move(use, player, board, multi, .1, .7, two, 0); + if(index < 0){ + done = 1; + continue; + } + int row = index / 19; + int col = index % 19; + + char *swap = two; + two = one; + one = swap; + + if(player < 0) flip_board(board); + boards[count][0] = row; + boards[count][1] = col; + board_to_string(boards[count] + 2, board); + if(player < 0) flip_board(board); + ++count; + + move_go(board, player, row, col); + board_to_string(one, board); + + player = -player; + } } void run_go(int argc, char **argv) @@ -611,8 +811,12 @@ void run_go(int argc, char **argv) char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; + char *c2 = (argc > 5) ? argv[5] : 0; + char *w2 = (argc > 6) ? argv[6] : 0; int multi = find_arg(argc, argv, "-multi"); if(0==strcmp(argv[2], "train")) train_go(cfg, weights); + else if(0==strcmp(argv[2], "valid")) valid_go(cfg, weights, multi); + else if(0==strcmp(argv[2], "self")) self_go(cfg, weights, c2, w2, multi); else if(0==strcmp(argv[2], "test")) test_go(cfg, weights, multi); else if(0==strcmp(argv[2], "engine")) engine_go(cfg, weights, multi); } diff --git a/src/gru_layer.c b/src/gru_layer.c new file mode 100644 index 00000000..1c41cbfb --- /dev/null +++ b/src/gru_layer.c @@ -0,0 +1,307 @@ +#include "gru_layer.h" +#include "connected_layer.h" +#include "utils.h" +#include "cuda.h" +#include "blas.h" +#include "gemm.h" + +#include +#include +#include +#include + +static void increment_layer(layer *l, int steps) +{ + int num = l->outputs*l->batch*steps; + l->output += num; + l->delta += num; + l->x += num; + l->x_norm += num; + +#ifdef GPU + l->output_gpu += num; + l->delta_gpu += num; + l->x_gpu += num; + l->x_norm_gpu += num; +#endif +} + +layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) +{ + fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs); + batch = batch / steps; + layer l = {0}; + l.batch = batch; + l.type = GRU; + l.steps = steps; + l.inputs = inputs; + + l.input_z_layer = malloc(sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.input_z_layer) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize); + l.input_z_layer->batch = batch; + + l.state_z_layer = malloc(sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.state_z_layer) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize); + l.state_z_layer->batch = batch; + + + + l.input_r_layer = malloc(sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.input_r_layer) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize); + l.input_r_layer->batch = batch; + + l.state_r_layer = malloc(sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.state_r_layer) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize); + l.state_r_layer->batch = batch; + + + + l.input_h_layer = malloc(sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.input_h_layer) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize); + l.input_h_layer->batch = batch; + + l.state_h_layer = malloc(sizeof(layer)); + fprintf(stderr, "\t\t"); + *(l.state_h_layer) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize); + l.state_h_layer->batch = batch; + + l.batch_normalize = batch_normalize; + + + l.outputs = outputs; + l.output = calloc(outputs*batch*steps, sizeof(float)); + l.delta = calloc(outputs*batch*steps, sizeof(float)); + +#ifdef GPU + l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs); + l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs); + l.prev_state_gpu = cuda_make_array(l.output, batch*outputs); + l.state_gpu = cuda_make_array(l.output, batch*outputs); + l.output_gpu = cuda_make_array(l.output, batch*outputs*steps); + l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps); + l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs); + l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs); + l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs); +#endif + + return l; +} + +void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay) +{ + update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); + update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); +} + +void forward_gru_layer(layer l, network_state state) +{ +} + +void backward_gru_layer(layer l, network_state state) +{ +} + +#ifdef GPU + +void pull_gru_layer(layer l) +{ +} + +void push_gru_layer(layer l) +{ +} + +void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay) +{ + update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay); + update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay); + update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay); + update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay); + update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay); + update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay); +} + +void forward_gru_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + int i; + layer input_z_layer = *(l.input_z_layer); + layer input_r_layer = *(l.input_r_layer); + layer input_h_layer = *(l.input_h_layer); + + layer state_z_layer = *(l.state_z_layer); + layer state_r_layer = *(l.state_r_layer); + layer state_h_layer = *(l.state_h_layer); + + fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1); + + fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1); + fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1); + if(state.train) { + fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); + copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1); + } + + for (i = 0; i < l.steps; ++i) { + s.input = l.state_gpu; + forward_connected_layer_gpu(state_z_layer, s); + forward_connected_layer_gpu(state_r_layer, s); + + s.input = state.input; + forward_connected_layer_gpu(input_z_layer, s); + forward_connected_layer_gpu(input_r_layer, s); + forward_connected_layer_gpu(input_h_layer, s); + + + copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); + + copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); + + activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); + + copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); + + s.input = l.forgot_state_gpu; + forward_connected_layer_gpu(state_h_layer, s); + + copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); + + #ifdef USET + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); + #else + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); + #endif + + weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu); + + copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1); + + state.input += l.inputs*l.batch; + l.output_gpu += l.outputs*l.batch; + increment_layer(&input_z_layer, 1); + increment_layer(&input_r_layer, 1); + increment_layer(&input_h_layer, 1); + + increment_layer(&state_z_layer, 1); + increment_layer(&state_r_layer, 1); + increment_layer(&state_h_layer, 1); + } +} + +void backward_gru_layer_gpu(layer l, network_state state) +{ + network_state s = {0}; + s.train = state.train; + int i; + layer input_z_layer = *(l.input_z_layer); + layer input_r_layer = *(l.input_r_layer); + layer input_h_layer = *(l.input_h_layer); + + layer state_z_layer = *(l.state_z_layer); + layer state_r_layer = *(l.state_r_layer); + layer state_h_layer = *(l.state_h_layer); + + increment_layer(&input_z_layer, l.steps - 1); + increment_layer(&input_r_layer, l.steps - 1); + increment_layer(&input_h_layer, l.steps - 1); + + increment_layer(&state_z_layer, l.steps - 1); + increment_layer(&state_r_layer, l.steps - 1); + increment_layer(&state_h_layer, l.steps - 1); + + state.input += l.inputs*l.batch*(l.steps-1); + if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1); + l.output_gpu += l.outputs*l.batch*(l.steps-1); + l.delta_gpu += l.outputs*l.batch*(l.steps-1); + for (i = l.steps-1; i >= 0; --i) { + if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); + float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; + + copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); + + copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); + + activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); + activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); + + copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); + axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); + + #ifdef USET + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); + #else + activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); + #endif + + weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu); + + #ifdef USET + gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu); + #else + gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu); + #endif + + copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1); + + copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1); + mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); + fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1); + + s.input = l.forgot_state_gpu; + s.delta = l.forgot_delta_gpu; + + backward_connected_layer_gpu(state_h_layer, s); + if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu); + mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu); + + gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu); + copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1); + + gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu); + copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1); + + s.input = l.prev_state_gpu; + s.delta = prev_delta_gpu; + + backward_connected_layer_gpu(state_r_layer, s); + backward_connected_layer_gpu(state_z_layer, s); + + s.input = state.input; + s.delta = state.delta; + + backward_connected_layer_gpu(input_h_layer, s); + backward_connected_layer_gpu(input_r_layer, s); + backward_connected_layer_gpu(input_z_layer, s); + + + state.input -= l.inputs*l.batch; + if(state.delta) state.delta -= l.inputs*l.batch; + l.output_gpu -= l.outputs*l.batch; + l.delta_gpu -= l.outputs*l.batch; + increment_layer(&input_z_layer, -1); + increment_layer(&input_r_layer, -1); + increment_layer(&input_h_layer, -1); + + increment_layer(&state_z_layer, -1); + increment_layer(&state_r_layer, -1); + increment_layer(&state_h_layer, -1); + } +} +#endif diff --git a/src/gru_layer.h b/src/gru_layer.h new file mode 100644 index 00000000..bb9478b9 --- /dev/null +++ b/src/gru_layer.h @@ -0,0 +1,25 @@ + +#ifndef RNN_LAYER_H +#define RNN_LAYER_H + +#include "activations.h" +#include "layer.h" +#include "network.h" +#define USET + +layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log); + +void forward_rnn_layer(layer l, network_state state); +void backward_rnn_layer(layer l, network_state state); +void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay); + +#ifdef GPU +void forward_rnn_layer_gpu(layer l, network_state state); +void backward_rnn_layer_gpu(layer l, network_state state); +void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay); +void push_rnn_layer(layer l); +void pull_rnn_layer(layer l); +#endif + +#endif + diff --git a/src/image.c b/src/image.c index ef76d45a..aff5f642 100644 --- a/src/image.c +++ b/src/image.c @@ -110,6 +110,7 @@ void draw_detections(image im, int num, float thresh, box *boxes, float **probs, float prob = probs[i][class]; if(prob > thresh){ int width = pow(prob, 1./2.)*10+1; + width = 8; printf("%s: %.2f\n", names[class], prob); int offset = class*17 % classes; float red = get_color(0,offset,classes); @@ -511,6 +512,7 @@ void show_image_cv(image p, const char *name) w = (w * min) / h; h = min; } + if(w == im.w && h == im.h) return im; image resized = resize_image(im, w, h); return resized; } @@ -523,13 +525,7 @@ void show_image_cv(image p, const char *name) int dy = rand_int(0, resized.h - size); image crop = crop_image(resized, dx, dy, size, size); - /* - show_image(im, "orig"); - show_image(crop, "cropped"); - cvWaitKey(0); - */ - - free_image(resized); + if(resized.data != im.data) free_image(resized); return crop; } diff --git a/src/layer.h b/src/layer.h index c2cf3074..23769295 100644 --- a/src/layer.h +++ b/src/layer.h @@ -23,7 +23,11 @@ typedef enum { SHORTCUT, ACTIVE, RNN, - CRNN + GRU, + CRNN, + BATCHNORM, + NETWORK, + BLANK } LAYER_TYPE; typedef enum{ @@ -54,6 +58,7 @@ struct layer{ int flip; int index; int binary; + int xnor; int steps; int hidden; float dot; @@ -95,6 +100,10 @@ struct layer{ char *cfilters; float *filter_updates; float *state; + float *state_delta; + + float *concat; + float *concat_delta; float *binary_filters; @@ -132,17 +141,44 @@ struct layer{ struct layer *self_layer; struct layer *output_layer; + struct layer *input_gate_layer; + struct layer *state_gate_layer; + struct layer *input_save_layer; + struct layer *state_save_layer; + struct layer *input_state_layer; + struct layer *state_state_layer; + + struct layer *input_z_layer; + struct layer *state_z_layer; + + struct layer *input_r_layer; + struct layer *state_r_layer; + + struct layer *input_h_layer; + struct layer *state_h_layer; + #ifdef GPU + float *z_gpu; + float *r_gpu; + float *h_gpu; + int *indexes_gpu; + float * prev_state_gpu; + float * forgot_state_gpu; + float * forgot_delta_gpu; float * state_gpu; + float * state_delta_gpu; + float * gate_gpu; + float * gate_delta_gpu; + float * save_gpu; + float * save_delta_gpu; + float * concat_gpu; + float * concat_delta_gpu; float * filters_gpu; float * filter_updates_gpu; + float *binary_input_gpu; float *binary_filters_gpu; - float *mean_filters_gpu; - - float * spatial_mean_gpu; - float * spatial_variance_gpu; float * mean_gpu; float * variance_gpu; @@ -150,9 +186,6 @@ struct layer{ float * rolling_mean_gpu; float * rolling_variance_gpu; - float * spatial_mean_delta_gpu; - float * spatial_variance_delta_gpu; - float * variance_delta_gpu; float * mean_delta_gpu; diff --git a/src/network.c b/src/network.c index e6fb51e5..ca485d63 100644 --- a/src/network.c +++ b/src/network.c @@ -8,6 +8,7 @@ #include "crop_layer.h" #include "connected_layer.h" +#include "gru_layer.h" #include "rnn_layer.h" #include "crnn_layer.h" #include "local_layer.h" @@ -16,6 +17,7 @@ #include "deconvolutional_layer.h" #include "detection_layer.h" #include "normalization_layer.h" +#include "batchnorm_layer.h" #include "maxpool_layer.h" #include "avgpool_layer.h" #include "cost_layer.h" @@ -86,6 +88,8 @@ char *get_layer_string(LAYER_TYPE a) return "connected"; case RNN: return "rnn"; + case GRU: + return "gru"; case CRNN: return "crnn"; case MAXPOOL: @@ -108,6 +112,8 @@ char *get_layer_string(LAYER_TYPE a) return "shortcut"; case NORMALIZATION: return "normalization"; + case BATCHNORM: + return "batchnorm"; default: break; } @@ -146,12 +152,16 @@ void forward_network(network net, network_state state) forward_local_layer(l, state); } else if(l.type == NORMALIZATION){ forward_normalization_layer(l, state); + } else if(l.type == BATCHNORM){ + forward_batchnorm_layer(l, state); } else if(l.type == DETECTION){ forward_detection_layer(l, state); } else if(l.type == CONNECTED){ forward_connected_layer(l, state); } else if(l.type == RNN){ forward_rnn_layer(l, state); + } else if(l.type == GRU){ + forward_gru_layer(l, state); } else if(l.type == CRNN){ forward_crnn_layer(l, state); } else if(l.type == CROP){ @@ -190,6 +200,8 @@ void update_network(network net) update_connected_layer(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == RNN){ update_rnn_layer(l, update_batch, rate, net.momentum, net.decay); + } else if(l.type == GRU){ + update_gru_layer(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == CRNN){ update_crnn_layer(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == LOCAL){ @@ -200,6 +212,9 @@ void update_network(network net) float *get_network_output(network net) { + #ifdef GPU + return get_network_output_gpu(net); + #endif int i; for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; return net.layers[i].output; @@ -254,6 +269,8 @@ void backward_network(network net, network_state state) backward_activation_layer(l, state); } else if(l.type == NORMALIZATION){ backward_normalization_layer(l, state); + } else if(l.type == BATCHNORM){ + backward_batchnorm_layer(l, state); } else if(l.type == MAXPOOL){ if(i != 0) backward_maxpool_layer(l, state); } else if(l.type == AVGPOOL){ @@ -268,6 +285,8 @@ void backward_network(network net, network_state state) backward_connected_layer(l, state); } else if(l.type == RNN){ backward_rnn_layer(l, state); + } else if(l.type == GRU){ + backward_gru_layer(l, state); } else if(l.type == CRNN){ backward_crnn_layer(l, state); } else if(l.type == LOCAL){ diff --git a/src/network.h b/src/network.h index f4f8b5cd..66ceb303 100644 --- a/src/network.h +++ b/src/network.h @@ -37,6 +37,7 @@ typedef struct network{ int inputs; int h, w, c; int max_crop; + int min_crop; #ifdef GPU float **input_gpu; diff --git a/src/network_kernels.cu b/src/network_kernels.cu index 730634ef..986a8081 100644 --- a/src/network_kernels.cu +++ b/src/network_kernels.cu @@ -16,6 +16,7 @@ extern "C" { #include "crop_layer.h" #include "connected_layer.h" #include "rnn_layer.h" +#include "gru_layer.h" #include "crnn_layer.h" #include "detection_layer.h" #include "convolutional_layer.h" @@ -24,6 +25,7 @@ extern "C" { #include "maxpool_layer.h" #include "avgpool_layer.h" #include "normalization_layer.h" +#include "batchnorm_layer.h" #include "cost_layer.h" #include "local_layer.h" #include "softmax_layer.h" @@ -60,6 +62,8 @@ void forward_network_gpu(network net, network_state state) forward_connected_layer_gpu(l, state); } else if(l.type == RNN){ forward_rnn_layer_gpu(l, state); + } else if(l.type == GRU){ + forward_gru_layer_gpu(l, state); } else if(l.type == CRNN){ forward_crnn_layer_gpu(l, state); } else if(l.type == CROP){ @@ -70,6 +74,8 @@ void forward_network_gpu(network net, network_state state) forward_softmax_layer_gpu(l, state); } else if(l.type == NORMALIZATION){ forward_normalization_layer_gpu(l, state); + } else if(l.type == BATCHNORM){ + forward_batchnorm_layer_gpu(l, state); } else if(l.type == MAXPOOL){ forward_maxpool_layer_gpu(l, state); } else if(l.type == AVGPOOL){ @@ -119,12 +125,16 @@ void backward_network_gpu(network net, network_state state) backward_detection_layer_gpu(l, state); } else if(l.type == NORMALIZATION){ backward_normalization_layer_gpu(l, state); + } else if(l.type == BATCHNORM){ + backward_batchnorm_layer_gpu(l, state); } else if(l.type == SOFTMAX){ if(i != 0) backward_softmax_layer_gpu(l, state); } else if(l.type == CONNECTED){ backward_connected_layer_gpu(l, state); } else if(l.type == RNN){ backward_rnn_layer_gpu(l, state); + } else if(l.type == GRU){ + backward_gru_layer_gpu(l, state); } else if(l.type == CRNN){ backward_crnn_layer_gpu(l, state); } else if(l.type == COST){ @@ -150,6 +160,8 @@ void update_network_gpu(network net) update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay); } else if(l.type == CONNECTED){ update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay); + } else if(l.type == GRU){ + update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == RNN){ update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == CRNN){ diff --git a/src/parser.c b/src/parser.c index c109a14e..6c88fd5c 100644 --- a/src/parser.c +++ b/src/parser.c @@ -9,9 +9,11 @@ #include "convolutional_layer.h" #include "activation_layer.h" #include "normalization_layer.h" +#include "batchnorm_layer.h" #include "deconvolutional_layer.h" #include "connected_layer.h" #include "rnn_layer.h" +#include "gru_layer.h" #include "crnn_layer.h" #include "maxpool_layer.h" #include "softmax_layer.h" @@ -37,12 +39,14 @@ int is_local(section *s); int is_deconvolutional(section *s); int is_connected(section *s); int is_rnn(section *s); +int is_gru(section *s); int is_crnn(section *s); int is_maxpool(section *s); int is_avgpool(section *s); int is_dropout(section *s); int is_softmax(section *s); int is_normalization(section *s); +int is_batchnorm(section *s); int is_crop(section *s); int is_shortcut(section *s); int is_cost(section *s); @@ -157,8 +161,9 @@ convolutional_layer parse_convolutional(list *options, size_params params) if(!(h && w && c)) error("Layer before convolutional layer must output image."); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); int binary = option_find_int_quiet(options, "binary", 0); + int xnor = option_find_int_quiet(options, "xnor", 0); - convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary); + convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary, xnor); layer.flipped = option_find_int_quiet(options, "flipped", 0); layer.dot = option_find_float_quiet(options, "dot", 0); @@ -203,6 +208,16 @@ layer parse_rnn(list *options, size_params params) return l; } +layer parse_gru(list *options, size_params params) +{ + int output = option_find_int(options, "output",1); + int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); + + layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize); + + return l; +} + connected_layer parse_connected(list *options, size_params params) { int output = option_find_int(options, "output",1); @@ -333,6 +348,12 @@ layer parse_normalization(list *options, size_params params) return l; } +layer parse_batchnorm(list *options, size_params params) +{ + layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c); + return l; +} + layer parse_shortcut(list *options, size_params params, network net) { char *l = option_find(options, "from"); @@ -438,6 +459,7 @@ void parse_net_options(list *options, network *net) net->c = option_find_int_quiet(options, "channels",0); net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); + net->min_crop = option_find_int_quiet(options, "min_crop",net->w); if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); @@ -520,6 +542,8 @@ network parse_network_cfg(char *filename) l = parse_deconvolutional(options, params); }else if(is_rnn(s)){ l = parse_rnn(options, params); + }else if(is_gru(s)){ + l = parse_gru(options, params); }else if(is_crnn(s)){ l = parse_crnn(options, params); }else if(is_connected(s)){ @@ -534,6 +558,8 @@ network parse_network_cfg(char *filename) l = parse_softmax(options, params); }else if(is_normalization(s)){ l = parse_normalization(options, params); + }else if(is_batchnorm(s)){ + l = parse_batchnorm(options, params); }else if(is_maxpool(s)){ l = parse_maxpool(options, params); }else if(is_avgpool(s)){ @@ -573,6 +599,40 @@ network parse_network_cfg(char *filename) return net; } +LAYER_TYPE string_to_layer_type(char * type) +{ + + if (strcmp(type, "[shortcut]")==0) return SHORTCUT; + if (strcmp(type, "[crop]")==0) return CROP; + if (strcmp(type, "[cost]")==0) return COST; + if (strcmp(type, "[detection]")==0) return DETECTION; + if (strcmp(type, "[local]")==0) return LOCAL; + if (strcmp(type, "[deconv]")==0 + || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL; + if (strcmp(type, "[conv]")==0 + || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; + if (strcmp(type, "[activation]")==0) return ACTIVE; + if (strcmp(type, "[net]")==0 + || strcmp(type, "[network]")==0) return NETWORK; + if (strcmp(type, "[crnn]")==0) return CRNN; + if (strcmp(type, "[gru]")==0) return GRU; + if (strcmp(type, "[rnn]")==0) return RNN; + if (strcmp(type, "[conn]")==0 + || strcmp(type, "[connected]")==0) return CONNECTED; + if (strcmp(type, "[max]")==0 + || strcmp(type, "[maxpool]")==0) return MAXPOOL; + if (strcmp(type, "[avg]")==0 + || strcmp(type, "[avgpool]")==0) return AVGPOOL; + if (strcmp(type, "[dropout]")==0) return DROPOUT; + if (strcmp(type, "[lrn]")==0 + || strcmp(type, "[normalization]")==0) return NORMALIZATION; + if (strcmp(type, "[batchnorm]")==0) return BATCHNORM; + if (strcmp(type, "[soft]")==0 + || strcmp(type, "[softmax]")==0) return SOFTMAX; + if (strcmp(type, "[route]")==0) return ROUTE; + return BLANK; +} + int is_shortcut(section *s) { return (strcmp(s->type, "[shortcut]")==0); @@ -616,6 +676,10 @@ int is_crnn(section *s) { return (strcmp(s->type, "[crnn]")==0); } +int is_gru(section *s) +{ + return (strcmp(s->type, "[gru]")==0); +} int is_rnn(section *s) { return (strcmp(s->type, "[rnn]")==0); @@ -646,6 +710,11 @@ int is_normalization(section *s) || strcmp(s->type, "[normalization]")==0); } +int is_batchnorm(section *s) +{ + return (strcmp(s->type, "[batchnorm]")==0); +} + int is_softmax(section *s) { return (strcmp(s->type, "[soft]")==0 @@ -824,6 +893,13 @@ void save_weights_upto(network net, char *filename, int cutoff) save_connected_weights(*(l.input_layer), fp); save_connected_weights(*(l.self_layer), fp); save_connected_weights(*(l.output_layer), fp); + } if(l.type == GRU){ + save_connected_weights(*(l.input_z_layer), fp); + save_connected_weights(*(l.input_r_layer), fp); + save_connected_weights(*(l.input_h_layer), fp); + save_connected_weights(*(l.state_z_layer), fp); + save_connected_weights(*(l.state_r_layer), fp); + save_connected_weights(*(l.state_h_layer), fp); } if(l.type == CRNN){ save_convolutional_weights(*(l.input_layer), fp); save_convolutional_weights(*(l.self_layer), fp); @@ -867,10 +943,15 @@ void load_connected_weights(layer l, FILE *fp, int transpose) if(transpose){ transpose_matrix(l.weights, l.inputs, l.outputs); } + //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); + //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); if (l.batch_normalize && (!l.dontloadscales)){ fread(l.scales, sizeof(float), l.outputs, fp); fread(l.rolling_mean, sizeof(float), l.outputs, fp); fread(l.rolling_variance, sizeof(float), l.outputs, fp); + //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); + //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); + //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); } #ifdef GPU if(gpu_index >= 0){ @@ -982,6 +1063,14 @@ void load_weights_upto(network *net, char *filename, int cutoff) load_connected_weights(*(l.self_layer), fp, transpose); load_connected_weights(*(l.output_layer), fp, transpose); } + if(l.type == GRU){ + load_connected_weights(*(l.input_z_layer), fp, transpose); + load_connected_weights(*(l.input_r_layer), fp, transpose); + load_connected_weights(*(l.input_h_layer), fp, transpose); + load_connected_weights(*(l.state_z_layer), fp, transpose); + load_connected_weights(*(l.state_r_layer), fp, transpose); + load_connected_weights(*(l.state_h_layer), fp, transpose); + } if(l.type == LOCAL){ int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; diff --git a/src/rnn.c b/src/rnn.c index 30fa4bd0..b72fafc7 100644 --- a/src/rnn.c +++ b/src/rnn.c @@ -1,6 +1,7 @@ #include "network.h" #include "cost_layer.h" #include "utils.h" +#include "blas.h" #include "parser.h" #ifdef OPENCV @@ -12,29 +13,26 @@ typedef struct { float *y; } float_pair; -float_pair get_rnn_data(unsigned char *text, int characters, int len, int batch, int steps) +float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps) { float *x = calloc(batch * steps * characters, sizeof(float)); float *y = calloc(batch * steps * characters, sizeof(float)); int i,j; for(i = 0; i < batch; ++i){ - int index = rand() %(len - steps - 1); - /* - int done = 1; - while(!done){ - index = rand() %(len - steps - 1); - while(index < len-steps-1 && text[index++] != '\n'); - if (index < len-steps-1) done = 1; - } - */ for(j = 0; j < steps; ++j){ - x[(j*batch + i)*characters + text[index + j]] = 1; - y[(j*batch + i)*characters + text[index + j + 1]] = 1; + unsigned char curr = text[(offsets[i])%len]; + unsigned char next = text[(offsets[i] + 1)%len]; - if(text[index+j] > 255 || text[index+j] <= 0 || text[index+j+1] > 255 || text[index+j+1] <= 0){ - text[index+j+2] = 0; - printf("%d %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]); + x[(j*batch + i)*characters + curr] = 1; + y[(j*batch + i)*characters + next] = 1; + + offsets[i] = (offsets[i] + 1) % len; + + if(curr > 255 || curr <= 0 || next > 255 || next <= 0){ + /*text[(index+j+2)%len] = 0; + printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]); printf("%s", text+index); + */ error("Bad char"); } } @@ -45,8 +43,23 @@ float_pair get_rnn_data(unsigned char *text, int characters, int len, int batch, return p; } -void train_char_rnn(char *cfgfile, char *weightfile, char *filename) +void reset_rnn_state(network net, int b) { + int i; + for (i = 0; i < net.n; ++i) { + layer l = net.layers[i]; + #ifdef GPU + if(l.state_gpu){ + fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); + } + #endif + } +} + +void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear) +{ + srand(time(0)); + data_seed = time(0); FILE *fp = fopen(filename, "rb"); fseek(fp, 0, SEEK_END); @@ -58,8 +71,6 @@ void train_char_rnn(char *cfgfile, char *weightfile, char *filename) fclose(fp); char *backup_directory = "/home/pjreddie/backup/"; - srand(time(0)); - data_seed = time(0); char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); float avg_loss = -1; @@ -67,18 +78,26 @@ void train_char_rnn(char *cfgfile, char *weightfile, char *filename) if(weightfile){ load_weights(&net, weightfile); } + int inputs = get_network_input_size(net); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int batch = net.batch; int steps = net.time_steps; - //*net.seen = 0; + if(clear) *net.seen = 0; int i = (*net.seen)/net.batch; + int streams = batch/steps; + size_t *offsets = calloc(streams, sizeof(size_t)); + int j; + for(j = 0; j < streams; ++j){ + offsets[j] = rand_size_t()%size; + } + clock_t time; while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); - float_pair p = get_rnn_data(text, inputs, size, batch/steps, steps); + float_pair p = get_rnn_data(text, offsets, inputs, size, streams, steps); float loss = train_network_datum(net, p.x, p.y) / (batch); free(p.x); @@ -86,7 +105,18 @@ void train_char_rnn(char *cfgfile, char *weightfile, char *filename) if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; - fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); + int chars = get_current_batch(net)*batch; + fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size); + + for(j = 0; j < streams; ++j){ + //printf("%d\n", j); + if(rand()%10 == 0){ + //fprintf(stderr, "Reset\n"); + offsets[j] = rand_size_t()%size; + reset_rnn_state(net, j); + } + } + if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); @@ -120,6 +150,15 @@ void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float t unsigned char c; int len = strlen(seed); float *input = calloc(inputs, sizeof(float)); + +/* + fill_cpu(inputs, 0, input, 1); + for(i = 0; i < 10; ++i){ + network_predict(net, input); + } + fill_cpu(inputs, 0, input, 1); + */ + for(i = 0; i < len-1; ++i){ c = seed[i]; input[(int)c] = 1; @@ -130,16 +169,16 @@ void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float t c = seed[len-1]; for(i = 0; i < num; ++i){ printf("%c", c); - float r = rand_uniform(0,1); - float sum = 0; input[(int)c] = 1; float *out = network_predict(net, input); input[(int)c] = 0; - for(j = 0; j < inputs; ++j){ - sum += out[j]; - if(sum > r) break; + for(j = 32; j < 127; ++j){ + //printf("%d %c %f\n",j, j, out[j]); } - c = j; + for(j = 0; j < inputs; ++j){ + //if (out[j] < .0001) out[j] = 0; + } + c = sample_array(out, inputs); } printf("\n"); } @@ -158,11 +197,16 @@ void valid_char_rnn(char *cfgfile, char *weightfile) int count = 0; int c; float *input = calloc(inputs, sizeof(float)); + int i; + for(i = 0; i < 100; ++i){ + network_predict(net, input); + } float sum = 0; c = getc(stdin); float log2 = log(2); while(c != EOF){ int next = getc(stdin); + if(next < 0 || next >= 255) error("Out of range character"); if(next == EOF) break; ++count; input[c] = 1; @@ -170,8 +214,8 @@ void valid_char_rnn(char *cfgfile, char *weightfile) input[c] = 0; sum += log(out[next])/log2; c = next; + printf("%d Perplexity: %f\n", count, pow(2, -sum/count)); } - printf("Perplexity: %f\n", pow(2, -sum/count)); } @@ -186,10 +230,11 @@ void run_char_rnn(int argc, char **argv) int len = find_int_arg(argc, argv, "-len", 1000); float temp = find_float_arg(argc, argv, "-temp", .7); int rseed = find_int_arg(argc, argv, "-srand", time(0)); + int clear = find_arg(argc, argv, "-clear"); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; - if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename); + if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear); else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights); else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed); } diff --git a/src/rnn_layer.c b/src/rnn_layer.c index 35cf9923..b713899c 100644 --- a/src/rnn_layer.c +++ b/src/rnn_layer.c @@ -242,8 +242,6 @@ void backward_rnn_layer_gpu(layer l, network_state state) increment_layer(&output_layer, l.steps - 1); l.state_gpu += l.hidden*l.batch*l.steps; for (i = l.steps-1; i >= 0; --i) { - copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1); - axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); s.input = l.state_gpu; s.delta = self_layer.delta_gpu; @@ -251,12 +249,14 @@ void backward_rnn_layer_gpu(layer l, network_state state) l.state_gpu -= l.hidden*l.batch; + copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); + s.input = l.state_gpu; s.delta = self_layer.delta_gpu - l.hidden*l.batch; if (i == 0) s.delta = 0; backward_connected_layer_gpu(self_layer, s); - copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); + //copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); s.input = state.input + i*l.inputs*l.batch; if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; diff --git a/src/rnn_layer.h b/src/rnn_layer.h index 00dc1be9..9e19cee1 100644 --- a/src/rnn_layer.h +++ b/src/rnn_layer.h @@ -1,23 +1,23 @@ -#ifndef RNN_LAYER_H -#define RNN_LAYER_H +#ifndef GRU_LAYER_H +#define GRU_LAYER_H #include "activations.h" #include "layer.h" #include "network.h" -layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log); +layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize); -void forward_rnn_layer(layer l, network_state state); -void backward_rnn_layer(layer l, network_state state); -void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay); +void forward_gru_layer(layer l, network_state state); +void backward_gru_layer(layer l, network_state state); +void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay); #ifdef GPU -void forward_rnn_layer_gpu(layer l, network_state state); -void backward_rnn_layer_gpu(layer l, network_state state); -void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay); -void push_rnn_layer(layer l); -void pull_rnn_layer(layer l); +void forward_gru_layer_gpu(layer l, network_state state); +void backward_gru_layer_gpu(layer l, network_state state); +void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay); +void push_gru_layer(layer l); +void pull_gru_layer(layer l); #endif #endif diff --git a/src/utils.c b/src/utils.c index 398d18a8..1541e052 100644 --- a/src/utils.c +++ b/src/utils.c @@ -273,6 +273,42 @@ char *fgetl(FILE *fp) return line; } +int read_int(int fd) +{ + int n = 0; + int next = read(fd, &n, sizeof(int)); + if(next <= 0) return -1; + return n; +} + +void write_int(int fd, int n) +{ + int next = write(fd, &n, sizeof(int)); + if(next <= 0) error("read failed"); +} + +int read_all_fail(int fd, char *buffer, size_t bytes) +{ + size_t n = 0; + while(n < bytes){ + int next = read(fd, buffer + n, bytes-n); + if(next <= 0) return 1; + n += next; + } + return 0; +} + +int write_all_fail(int fd, char *buffer, size_t bytes) +{ + size_t n = 0; + while(n < bytes){ + size_t next = write(fd, buffer + n, bytes-n); + if(next <= 0) return 1; + n += next; + } + return 0; +} + void read_all(int fd, char *buffer, size_t bytes) { size_t n = 0; @@ -441,6 +477,19 @@ void scale_array(float *a, int n, float s) } } +int sample_array(float *a, int n) +{ + float sum = sum_array(a, n); + scale_array(a, n, 1./sum); + float r = rand_uniform(0, 1); + int i; + for(i = 0; i < n; ++i){ + r = r - a[i]; + if (r <= 0) return i; + } + return n-1; +} + int max_index(float *a, int n) { if(n <= 0) return -1; @@ -495,6 +544,18 @@ float rand_normal() } */ +size_t rand_size_t() +{ + return ((size_t)(rand()&0xff) << 56) | + ((size_t)(rand()&0xff) << 48) | + ((size_t)(rand()&0xff) << 40) | + ((size_t)(rand()&0xff) << 32) | + ((size_t)(rand()&0xff) << 24) | + ((size_t)(rand()&0xff) << 16) | + ((size_t)(rand()&0xff) << 8) | + ((size_t)(rand()&0xff) << 0); +} + float rand_uniform(float min, float max) { return ((float)rand()/RAND_MAX * (max - min)) + min; diff --git a/src/utils.h b/src/utils.h index 3af85d33..7e49818c 100644 --- a/src/utils.h +++ b/src/utils.h @@ -12,8 +12,12 @@ void free_ptrs(void **ptrs, int n); char *basecfg(char *cfgfile); int alphanum_to_int(char c); char int_to_alphanum(int i); +int read_int(int fd); +void write_int(int fd, int n); void read_all(int fd, char *buffer, size_t bytes); void write_all(int fd, char *buffer, size_t bytes); +int read_all_fail(int fd, char *buffer, size_t bytes); +int write_all_fail(int fd, char *buffer, size_t bytes); char *find_replace(char *str, char *orig, char *rep); void error(const char *s); void malloc_error(); @@ -34,6 +38,7 @@ int max_index(float *a, int n); float constrain(float min, float max, float a); float mse_array(float *a, int n); float rand_normal(); +size_t rand_size_t(); float rand_uniform(float min, float max); int rand_int(int min, int max); float sum_array(float *a, int n); @@ -47,6 +52,7 @@ int find_int_arg(int argc, char **argv, char *arg, int def); float find_float_arg(int argc, char **argv, char *arg, float def); int find_arg(int argc, char* argv[], char *arg); char *find_char_arg(int argc, char **argv, char *arg, char *def); +int sample_array(float *a, int n); #endif diff --git a/src/yolo.c b/src/yolo.c index 02c4fba2..9c3999ea 100644 --- a/src/yolo.c +++ b/src/yolo.c @@ -71,7 +71,7 @@ void train_yolo(char *cfgfile, char *weightfile) avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); - if(i%1000==0 || i == 600){ + if(i%1000==0 || (i < 1000 && i%100 == 0)){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); @@ -143,7 +143,8 @@ void validate_yolo(char *cfgfile, char *weightfile) srand(time(0)); char *base = "results/comp4_det_test_"; - list *plist = get_paths("data/voc.2007.test"); + //list *plist = get_paths("data/voc.2007.test"); + list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt"); //list *plist = get_paths("data/voc.2012.test"); char **paths = (char **)list_to_array(plist); @@ -344,7 +345,7 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh) convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0); if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); - draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, 0, 20); + draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20); show_image(im, "predictions"); save_image(im, "predictions"); @@ -359,42 +360,6 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh) } } -/* -#ifdef OPENCV -image ipl_to_image(IplImage* src); -#include "opencv2/highgui/highgui_c.h" -#include "opencv2/imgproc/imgproc_c.h" - -void demo_swag(char *cfgfile, char *weightfile, float thresh) -{ -network net = parse_network_cfg(cfgfile); -if(weightfile){ -load_weights(&net, weightfile); -} -detection_layer layer = net.layers[net.n-1]; -CvCapture *capture = cvCaptureFromCAM(-1); -set_batch_network(&net, 1); -srand(2222222); -while(1){ -IplImage* frame = cvQueryFrame(capture); -image im = ipl_to_image(frame); -cvReleaseImage(&frame); -rgbgr_image(im); - -image sized = resize_image(im, net.w, net.h); -float *X = sized.data; -float *predictions = network_predict(net, X); -draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh); -free_image(im); -free_image(sized); -cvWaitKey(10); -} -} -#else -void demo_swag(char *cfgfile, char *weightfile, float thresh){} -#endif - */ - void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename); void run_yolo(int argc, char **argv) diff --git a/src/yolo_demo.c b/src/yolo_demo.c index 4e3f8392..194a2362 100644 --- a/src/yolo_demo.c +++ b/src/yolo_demo.c @@ -12,7 +12,6 @@ #include "opencv2/imgproc/imgproc.hpp" image ipl_to_image(IplImage* src); void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness); -void draw_yolo(image im, int num, float thresh, box *boxes, float **probs); extern char *voc_names[]; extern image voc_labels[]; diff --git a/src/yolo_kernels.cu b/src/yolo_kernels.cu index d7f1b260..b320026c 100644 --- a/src/yolo_kernels.cu +++ b/src/yolo_kernels.cu @@ -18,7 +18,6 @@ extern "C" { #include "opencv2/imgproc/imgproc.hpp" extern "C" image ipl_to_image(IplImage* src); extern "C" void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness); -extern "C" void draw_yolo(image im, int num, float thresh, box *boxes, float **probs); extern "C" char *voc_names[]; extern "C" image voc_labels[];