mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
So there WAS this huge bug. Gone now
This commit is contained in:
@ -7,7 +7,7 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, float dropout, ACTIVATION activation)
|
||||
{
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
int i;
|
||||
@ -15,6 +15,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
layer->inputs = inputs;
|
||||
layer->outputs = outputs;
|
||||
layer->batch=batch;
|
||||
layer->dropout = dropout;
|
||||
|
||||
layer->output = calloc(batch*outputs, sizeof(float*));
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
@ -54,9 +55,9 @@ void update_connected_layer(connected_layer layer, float step, float momentum, f
|
||||
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
|
||||
}
|
||||
|
||||
void forward_connected_layer(connected_layer layer, float *input)
|
||||
void forward_connected_layer(connected_layer layer, float *input, int train)
|
||||
{
|
||||
int i;
|
||||
if(!train) layer.dropout = 0;
|
||||
memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
@ -65,17 +66,15 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
float *b = layer.weights;
|
||||
float *c = layer.output;
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
activate_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.dropout);
|
||||
}
|
||||
|
||||
void learn_connected_layer(connected_layer layer, float *input)
|
||||
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.delta[i] *= gradient(layer.output[i], layer.activation);
|
||||
layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
|
||||
layer.bias_updates[i%layer.batch] += layer.delta[i];
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
@ -84,18 +83,15 @@ void learn_connected_layer(connected_layer layer, float *input)
|
||||
float *b = layer.delta;
|
||||
float *c = layer.weight_updates;
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
}
|
||||
|
||||
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
{
|
||||
int m = layer.inputs;
|
||||
int k = layer.outputs;
|
||||
int n = layer.batch;
|
||||
|
||||
float *a = layer.weights;
|
||||
float *b = layer.delta;
|
||||
float *c = delta;
|
||||
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
|
||||
|
||||
m = layer.inputs;
|
||||
k = layer.outputs;
|
||||
n = layer.batch;
|
||||
|
||||
a = layer.weights;
|
||||
b = layer.delta;
|
||||
c = delta;
|
||||
|
||||
if(c) gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user