mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Just used spaces for indents instead of Tabs
This commit is contained in:
364
src/network.c
364
src/network.c
@ -33,19 +33,19 @@
|
||||
|
||||
network *load_network_custom(char *cfg, char *weights, int clear, int batch)
|
||||
{
|
||||
printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
|
||||
network *net = calloc(1, sizeof(network));
|
||||
*net = parse_network_cfg_custom(cfg, batch);
|
||||
if (weights && weights[0] != 0) {
|
||||
load_weights(net, weights);
|
||||
}
|
||||
if (clear) (*net->seen) = 0;
|
||||
return net;
|
||||
printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
|
||||
network *net = calloc(1, sizeof(network));
|
||||
*net = parse_network_cfg_custom(cfg, batch);
|
||||
if (weights && weights[0] != 0) {
|
||||
load_weights(net, weights);
|
||||
}
|
||||
if (clear) (*net->seen) = 0;
|
||||
return net;
|
||||
}
|
||||
|
||||
network *load_network(char *cfg, char *weights, int clear)
|
||||
{
|
||||
return load_network_custom(cfg, weights, clear, 0);
|
||||
return load_network_custom(cfg, weights, clear, 0);
|
||||
}
|
||||
|
||||
int get_current_batch(network net)
|
||||
@ -67,23 +67,23 @@ void reset_momentum(network net)
|
||||
|
||||
void reset_network_state(network *net, int b)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < net->n; ++i) {
|
||||
int i;
|
||||
for (i = 0; i < net->n; ++i) {
|
||||
#ifdef GPU
|
||||
layer l = net->layers[i];
|
||||
if (l.state_gpu) {
|
||||
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
||||
}
|
||||
if (l.h_gpu) {
|
||||
fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
|
||||
}
|
||||
layer l = net->layers[i];
|
||||
if (l.state_gpu) {
|
||||
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
||||
}
|
||||
if (l.h_gpu) {
|
||||
fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reset_rnn(network *net)
|
||||
{
|
||||
reset_network_state(net, 0);
|
||||
reset_network_state(net, 0);
|
||||
}
|
||||
|
||||
float get_current_rate(network net)
|
||||
@ -91,7 +91,7 @@ float get_current_rate(network net)
|
||||
int batch_num = get_current_batch(net);
|
||||
int i;
|
||||
float rate;
|
||||
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
||||
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
||||
switch (net.policy) {
|
||||
case CONSTANT:
|
||||
return net.learning_rate;
|
||||
@ -108,7 +108,7 @@ float get_current_rate(network net)
|
||||
case EXP:
|
||||
return net.learning_rate * pow(net.gamma, batch_num);
|
||||
case POLY:
|
||||
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
||||
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
||||
//if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
||||
//return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
||||
case RANDOM:
|
||||
@ -182,10 +182,10 @@ network make_network(int n)
|
||||
net.input_gpu = calloc(1, sizeof(float *));
|
||||
net.truth_gpu = calloc(1, sizeof(float *));
|
||||
|
||||
net.input16_gpu = calloc(1, sizeof(float *));
|
||||
net.output16_gpu = calloc(1, sizeof(float *));
|
||||
net.max_input16_size = calloc(1, sizeof(size_t));
|
||||
net.max_output16_size = calloc(1, sizeof(size_t));
|
||||
net.input16_gpu = calloc(1, sizeof(float *));
|
||||
net.output16_gpu = calloc(1, sizeof(float *));
|
||||
net.max_input16_size = calloc(1, sizeof(size_t));
|
||||
net.max_output16_size = calloc(1, sizeof(size_t));
|
||||
#endif
|
||||
return net;
|
||||
}
|
||||
@ -362,20 +362,20 @@ void set_batch_network(network *net, int b)
|
||||
net->layers[i].batch = b;
|
||||
#ifdef CUDNN
|
||||
if(net->layers[i].type == CONVOLUTIONAL){
|
||||
cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
|
||||
/*
|
||||
layer *l = net->layers + i;
|
||||
cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
|
||||
/*
|
||||
layer *l = net->layers + i;
|
||||
cudnn_convolutional_setup(l, cudnn_fastest);
|
||||
// check for excessive memory consumption
|
||||
size_t free_byte;
|
||||
size_t total_byte;
|
||||
check_error(cudaMemGetInfo(&free_byte, &total_byte));
|
||||
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
|
||||
printf(" used slow CUDNN algo without Workspace! \n");
|
||||
cudnn_convolutional_setup(l, cudnn_smallest);
|
||||
l->workspace_size = get_workspace_size(*l);
|
||||
}
|
||||
*/
|
||||
// check for excessive memory consumption
|
||||
size_t free_byte;
|
||||
size_t total_byte;
|
||||
check_error(cudaMemGetInfo(&free_byte, &total_byte));
|
||||
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
|
||||
printf(" used slow CUDNN algo without Workspace! \n");
|
||||
cudnn_convolutional_setup(l, cudnn_smallest);
|
||||
l->workspace_size = get_workspace_size(*l);
|
||||
}
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -387,12 +387,12 @@ int resize_network(network *net, int w, int h)
|
||||
cuda_set_device(net->gpu_index);
|
||||
if(gpu_index >= 0){
|
||||
cuda_free(net->workspace);
|
||||
if (net->input_gpu) {
|
||||
cuda_free(*net->input_gpu);
|
||||
*net->input_gpu = 0;
|
||||
cuda_free(*net->truth_gpu);
|
||||
*net->truth_gpu = 0;
|
||||
}
|
||||
if (net->input_gpu) {
|
||||
cuda_free(*net->input_gpu);
|
||||
*net->input_gpu = 0;
|
||||
cuda_free(*net->truth_gpu);
|
||||
*net->truth_gpu = 0;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
int i;
|
||||
@ -405,7 +405,7 @@ int resize_network(network *net, int w, int h)
|
||||
//fflush(stderr);
|
||||
for (i = 0; i < net->n; ++i){
|
||||
layer l = net->layers[i];
|
||||
//printf(" %d: layer = %d,", i, l.type);
|
||||
//printf(" %d: layer = %d,", i, l.type);
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
resize_convolutional_layer(&l, w, h);
|
||||
}else if(l.type == CROP){
|
||||
@ -414,14 +414,14 @@ int resize_network(network *net, int w, int h)
|
||||
resize_maxpool_layer(&l, w, h);
|
||||
}else if(l.type == REGION){
|
||||
resize_region_layer(&l, w, h);
|
||||
}else if (l.type == YOLO) {
|
||||
resize_yolo_layer(&l, w, h);
|
||||
}else if (l.type == YOLO) {
|
||||
resize_yolo_layer(&l, w, h);
|
||||
}else if(l.type == ROUTE){
|
||||
resize_route_layer(&l, net);
|
||||
}else if (l.type == SHORTCUT) {
|
||||
resize_shortcut_layer(&l, w, h);
|
||||
}else if (l.type == UPSAMPLE) {
|
||||
resize_upsample_layer(&l, w, h);
|
||||
}else if (l.type == SHORTCUT) {
|
||||
resize_shortcut_layer(&l, w, h);
|
||||
}else if (l.type == UPSAMPLE) {
|
||||
resize_upsample_layer(&l, w, h);
|
||||
}else if(l.type == REORG){
|
||||
resize_reorg_layer(&l, w, h);
|
||||
}else if(l.type == AVGPOOL){
|
||||
@ -431,7 +431,7 @@ int resize_network(network *net, int w, int h)
|
||||
}else if(l.type == COST){
|
||||
resize_cost_layer(&l, inputs);
|
||||
}else{
|
||||
fprintf(stderr, "Resizing type %d \n", (int)l.type);
|
||||
fprintf(stderr, "Resizing type %d \n", (int)l.type);
|
||||
error("Cannot resize this type of layer");
|
||||
}
|
||||
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
||||
@ -443,9 +443,9 @@ int resize_network(network *net, int w, int h)
|
||||
}
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
printf(" try to allocate workspace = %zu * sizeof(float), ", workspace_size / sizeof(float) + 1);
|
||||
printf(" try to allocate workspace = %zu * sizeof(float), ", workspace_size / sizeof(float) + 1);
|
||||
net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1);
|
||||
printf(" CUDA allocate done! \n");
|
||||
printf(" CUDA allocate done! \n");
|
||||
}else {
|
||||
free(net->workspace);
|
||||
net->workspace = calloc(1, workspace_size);
|
||||
@ -551,112 +551,112 @@ float *network_predict(network net, float *input)
|
||||
|
||||
int num_detections(network *net, float thresh)
|
||||
{
|
||||
int i;
|
||||
int s = 0;
|
||||
for (i = 0; i < net->n; ++i) {
|
||||
layer l = net->layers[i];
|
||||
if (l.type == YOLO) {
|
||||
s += yolo_num_detections(l, thresh);
|
||||
}
|
||||
if (l.type == DETECTION || l.type == REGION) {
|
||||
s += l.w*l.h*l.n;
|
||||
}
|
||||
}
|
||||
return s;
|
||||
int i;
|
||||
int s = 0;
|
||||
for (i = 0; i < net->n; ++i) {
|
||||
layer l = net->layers[i];
|
||||
if (l.type == YOLO) {
|
||||
s += yolo_num_detections(l, thresh);
|
||||
}
|
||||
if (l.type == DETECTION || l.type == REGION) {
|
||||
s += l.w*l.h*l.n;
|
||||
}
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
detection *make_network_boxes(network *net, float thresh, int *num)
|
||||
{
|
||||
layer l = net->layers[net->n - 1];
|
||||
int i;
|
||||
int nboxes = num_detections(net, thresh);
|
||||
if (num) *num = nboxes;
|
||||
detection *dets = calloc(nboxes, sizeof(detection));
|
||||
for (i = 0; i < nboxes; ++i) {
|
||||
dets[i].prob = calloc(l.classes, sizeof(float));
|
||||
if (l.coords > 4) {
|
||||
dets[i].mask = calloc(l.coords - 4, sizeof(float));
|
||||
}
|
||||
}
|
||||
return dets;
|
||||
layer l = net->layers[net->n - 1];
|
||||
int i;
|
||||
int nboxes = num_detections(net, thresh);
|
||||
if (num) *num = nboxes;
|
||||
detection *dets = calloc(nboxes, sizeof(detection));
|
||||
for (i = 0; i < nboxes; ++i) {
|
||||
dets[i].prob = calloc(l.classes, sizeof(float));
|
||||
if (l.coords > 4) {
|
||||
dets[i].mask = calloc(l.coords - 4, sizeof(float));
|
||||
}
|
||||
}
|
||||
return dets;
|
||||
}
|
||||
|
||||
|
||||
void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
|
||||
{
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
int i, j;
|
||||
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float));
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
|
||||
for (j = 0; j < l.w*l.h*l.n; ++j) {
|
||||
dets[j].classes = l.classes;
|
||||
dets[j].bbox = boxes[j];
|
||||
dets[j].objectness = 1;
|
||||
for (i = 0; i < l.classes; ++i) {
|
||||
dets[j].prob[i] = probs[j][i];
|
||||
}
|
||||
}
|
||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
int i, j;
|
||||
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float));
|
||||
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
|
||||
for (j = 0; j < l.w*l.h*l.n; ++j) {
|
||||
dets[j].classes = l.classes;
|
||||
dets[j].bbox = boxes[j];
|
||||
dets[j].objectness = 1;
|
||||
for (i = 0; i < l.classes; ++i) {
|
||||
dets[j].prob[i] = probs[j][i];
|
||||
}
|
||||
}
|
||||
|
||||
free(boxes);
|
||||
free_ptrs((void **)probs, l.w*l.h*l.n);
|
||||
free(boxes);
|
||||
free_ptrs((void **)probs, l.w*l.h*l.n);
|
||||
|
||||
//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
|
||||
correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
|
||||
//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
|
||||
correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
|
||||
}
|
||||
|
||||
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
|
||||
{
|
||||
int prev_classes = -1;
|
||||
int j;
|
||||
for (j = 0; j < net->n; ++j) {
|
||||
layer l = net->layers[j];
|
||||
if (l.type == YOLO) {
|
||||
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
|
||||
dets += count;
|
||||
if (prev_classes < 0) prev_classes = l.classes;
|
||||
else if (prev_classes != l.classes) {
|
||||
printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
|
||||
prev_classes, l.classes);
|
||||
}
|
||||
}
|
||||
if (l.type == REGION) {
|
||||
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
|
||||
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
|
||||
dets += l.w*l.h*l.n;
|
||||
}
|
||||
if (l.type == DETECTION) {
|
||||
get_detection_detections(l, w, h, thresh, dets);
|
||||
dets += l.w*l.h*l.n;
|
||||
}
|
||||
}
|
||||
int prev_classes = -1;
|
||||
int j;
|
||||
for (j = 0; j < net->n; ++j) {
|
||||
layer l = net->layers[j];
|
||||
if (l.type == YOLO) {
|
||||
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
|
||||
dets += count;
|
||||
if (prev_classes < 0) prev_classes = l.classes;
|
||||
else if (prev_classes != l.classes) {
|
||||
printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
|
||||
prev_classes, l.classes);
|
||||
}
|
||||
}
|
||||
if (l.type == REGION) {
|
||||
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
|
||||
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
|
||||
dets += l.w*l.h*l.n;
|
||||
}
|
||||
if (l.type == DETECTION) {
|
||||
get_detection_detections(l, w, h, thresh, dets);
|
||||
dets += l.w*l.h*l.n;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
|
||||
{
|
||||
detection *dets = make_network_boxes(net, thresh, num);
|
||||
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
|
||||
return dets;
|
||||
detection *dets = make_network_boxes(net, thresh, num);
|
||||
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
|
||||
return dets;
|
||||
}
|
||||
|
||||
void free_detections(detection *dets, int n)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < n; ++i) {
|
||||
free(dets[i].prob);
|
||||
if (dets[i].mask) free(dets[i].mask);
|
||||
}
|
||||
free(dets);
|
||||
int i;
|
||||
for (i = 0; i < n; ++i) {
|
||||
free(dets[i].prob);
|
||||
if (dets[i].mask) free(dets[i].mask);
|
||||
}
|
||||
free(dets);
|
||||
}
|
||||
|
||||
float *network_predict_image(network *net, image im)
|
||||
{
|
||||
//image imr = letterbox_image(im, net->w, net->h);
|
||||
image imr = resize_image(im, net->w, net->h);
|
||||
set_batch_network(net, 1);
|
||||
float *p = network_predict(*net, imr.data);
|
||||
free_image(imr);
|
||||
return p;
|
||||
//image imr = letterbox_image(im, net->w, net->h);
|
||||
image imr = resize_image(im, net->w, net->h);
|
||||
set_batch_network(net, 1);
|
||||
float *p = network_predict(*net, imr.data);
|
||||
free_image(imr);
|
||||
return p;
|
||||
}
|
||||
|
||||
int network_width(network *net) { return net->w; }
|
||||
@ -780,70 +780,70 @@ float network_accuracy_multi(network net, data d, int n)
|
||||
|
||||
void free_network(network net)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < net.n; ++i) {
|
||||
free_layer(net.layers[i]);
|
||||
}
|
||||
free(net.layers);
|
||||
int i;
|
||||
for (i = 0; i < net.n; ++i) {
|
||||
free_layer(net.layers[i]);
|
||||
}
|
||||
free(net.layers);
|
||||
|
||||
free(net.scales);
|
||||
free(net.steps);
|
||||
free(net.seen);
|
||||
free(net.scales);
|
||||
free(net.steps);
|
||||
free(net.seen);
|
||||
|
||||
#ifdef GPU
|
||||
if (gpu_index >= 0) cuda_free(net.workspace);
|
||||
else free(net.workspace);
|
||||
if (*net.input_gpu) cuda_free(*net.input_gpu);
|
||||
if (*net.truth_gpu) cuda_free(*net.truth_gpu);
|
||||
if (net.input_gpu) free(net.input_gpu);
|
||||
if (net.truth_gpu) free(net.truth_gpu);
|
||||
if (gpu_index >= 0) cuda_free(net.workspace);
|
||||
else free(net.workspace);
|
||||
if (*net.input_gpu) cuda_free(*net.input_gpu);
|
||||
if (*net.truth_gpu) cuda_free(*net.truth_gpu);
|
||||
if (net.input_gpu) free(net.input_gpu);
|
||||
if (net.truth_gpu) free(net.truth_gpu);
|
||||
|
||||
if (*net.input16_gpu) cuda_free(*net.input16_gpu);
|
||||
if (*net.output16_gpu) cuda_free(*net.output16_gpu);
|
||||
if (net.input16_gpu) free(net.input16_gpu);
|
||||
if (net.output16_gpu) free(net.output16_gpu);
|
||||
if (net.max_input16_size) free(net.max_input16_size);
|
||||
if (net.max_output16_size) free(net.max_output16_size);
|
||||
if (*net.input16_gpu) cuda_free(*net.input16_gpu);
|
||||
if (*net.output16_gpu) cuda_free(*net.output16_gpu);
|
||||
if (net.input16_gpu) free(net.input16_gpu);
|
||||
if (net.output16_gpu) free(net.output16_gpu);
|
||||
if (net.max_input16_size) free(net.max_input16_size);
|
||||
if (net.max_output16_size) free(net.max_output16_size);
|
||||
#else
|
||||
free(net.workspace);
|
||||
free(net.workspace);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void fuse_conv_batchnorm(network net)
|
||||
{
|
||||
int j;
|
||||
for (j = 0; j < net.n; ++j) {
|
||||
layer *l = &net.layers[j];
|
||||
int j;
|
||||
for (j = 0; j < net.n; ++j) {
|
||||
layer *l = &net.layers[j];
|
||||
|
||||
if (l->type == CONVOLUTIONAL) {
|
||||
//printf(" Merges Convolutional-%d and batch_norm \n", j);
|
||||
if (l->type == CONVOLUTIONAL) {
|
||||
//printf(" Merges Convolutional-%d and batch_norm \n", j);
|
||||
|
||||
if (l->batch_normalize) {
|
||||
int f;
|
||||
for (f = 0; f < l->n; ++f)
|
||||
{
|
||||
l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
||||
if (l->batch_normalize) {
|
||||
int f;
|
||||
for (f = 0; f < l->n; ++f)
|
||||
{
|
||||
l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
||||
|
||||
const size_t filter_size = l->size*l->size*l->c;
|
||||
int i;
|
||||
for (i = 0; i < filter_size; ++i) {
|
||||
int w_index = f*filter_size + i;
|
||||
const size_t filter_size = l->size*l->size*l->c;
|
||||
int i;
|
||||
for (i = 0; i < filter_size; ++i) {
|
||||
int w_index = f*filter_size + i;
|
||||
|
||||
l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
||||
}
|
||||
}
|
||||
l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
|
||||
}
|
||||
}
|
||||
|
||||
l->batch_normalize = 0;
|
||||
l->batch_normalize = 0;
|
||||
#ifdef GPU
|
||||
if (gpu_index >= 0) {
|
||||
push_convolutional_layer(*l);
|
||||
}
|
||||
if (gpu_index >= 0) {
|
||||
push_convolutional_layer(*l);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else {
|
||||
//printf(" Fusion skip layer type: %d \n", l->type);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
//printf(" Fusion skip layer type: %d \n", l->type);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user