Just used spaces for indents instead of Tabs

This commit is contained in:
AlexeyAB
2018-07-10 23:29:15 +03:00
parent 81d4688b12
commit cfc5fedbb6
31 changed files with 4344 additions and 4336 deletions

View File

@ -33,19 +33,19 @@
network *load_network_custom(char *cfg, char *weights, int clear, int batch)
{
printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
network *net = calloc(1, sizeof(network));
*net = parse_network_cfg_custom(cfg, batch);
if (weights && weights[0] != 0) {
load_weights(net, weights);
}
if (clear) (*net->seen) = 0;
return net;
printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear);
network *net = calloc(1, sizeof(network));
*net = parse_network_cfg_custom(cfg, batch);
if (weights && weights[0] != 0) {
load_weights(net, weights);
}
if (clear) (*net->seen) = 0;
return net;
}
network *load_network(char *cfg, char *weights, int clear)
{
return load_network_custom(cfg, weights, clear, 0);
return load_network_custom(cfg, weights, clear, 0);
}
int get_current_batch(network net)
@ -67,23 +67,23 @@ void reset_momentum(network net)
void reset_network_state(network *net, int b)
{
int i;
for (i = 0; i < net->n; ++i) {
int i;
for (i = 0; i < net->n; ++i) {
#ifdef GPU
layer l = net->layers[i];
if (l.state_gpu) {
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
}
if (l.h_gpu) {
fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
}
layer l = net->layers[i];
if (l.state_gpu) {
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
}
if (l.h_gpu) {
fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
}
#endif
}
}
}
void reset_rnn(network *net)
{
reset_network_state(net, 0);
reset_network_state(net, 0);
}
float get_current_rate(network net)
@ -91,7 +91,7 @@ float get_current_rate(network net)
int batch_num = get_current_batch(net);
int i;
float rate;
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
switch (net.policy) {
case CONSTANT:
return net.learning_rate;
@ -108,7 +108,7 @@ float get_current_rate(network net)
case EXP:
return net.learning_rate * pow(net.gamma, batch_num);
case POLY:
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
//if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
//return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
case RANDOM:
@ -182,10 +182,10 @@ network make_network(int n)
net.input_gpu = calloc(1, sizeof(float *));
net.truth_gpu = calloc(1, sizeof(float *));
net.input16_gpu = calloc(1, sizeof(float *));
net.output16_gpu = calloc(1, sizeof(float *));
net.max_input16_size = calloc(1, sizeof(size_t));
net.max_output16_size = calloc(1, sizeof(size_t));
net.input16_gpu = calloc(1, sizeof(float *));
net.output16_gpu = calloc(1, sizeof(float *));
net.max_input16_size = calloc(1, sizeof(size_t));
net.max_output16_size = calloc(1, sizeof(size_t));
#endif
return net;
}
@ -362,20 +362,20 @@ void set_batch_network(network *net, int b)
net->layers[i].batch = b;
#ifdef CUDNN
if(net->layers[i].type == CONVOLUTIONAL){
cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
/*
layer *l = net->layers + i;
cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
/*
layer *l = net->layers + i;
cudnn_convolutional_setup(l, cudnn_fastest);
// check for excessive memory consumption
size_t free_byte;
size_t total_byte;
check_error(cudaMemGetInfo(&free_byte, &total_byte));
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
printf(" used slow CUDNN algo without Workspace! \n");
cudnn_convolutional_setup(l, cudnn_smallest);
l->workspace_size = get_workspace_size(*l);
}
*/
// check for excessive memory consumption
size_t free_byte;
size_t total_byte;
check_error(cudaMemGetInfo(&free_byte, &total_byte));
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
printf(" used slow CUDNN algo without Workspace! \n");
cudnn_convolutional_setup(l, cudnn_smallest);
l->workspace_size = get_workspace_size(*l);
}
*/
}
#endif
}
@ -387,12 +387,12 @@ int resize_network(network *net, int w, int h)
cuda_set_device(net->gpu_index);
if(gpu_index >= 0){
cuda_free(net->workspace);
if (net->input_gpu) {
cuda_free(*net->input_gpu);
*net->input_gpu = 0;
cuda_free(*net->truth_gpu);
*net->truth_gpu = 0;
}
if (net->input_gpu) {
cuda_free(*net->input_gpu);
*net->input_gpu = 0;
cuda_free(*net->truth_gpu);
*net->truth_gpu = 0;
}
}
#endif
int i;
@ -405,7 +405,7 @@ int resize_network(network *net, int w, int h)
//fflush(stderr);
for (i = 0; i < net->n; ++i){
layer l = net->layers[i];
//printf(" %d: layer = %d,", i, l.type);
//printf(" %d: layer = %d,", i, l.type);
if(l.type == CONVOLUTIONAL){
resize_convolutional_layer(&l, w, h);
}else if(l.type == CROP){
@ -414,14 +414,14 @@ int resize_network(network *net, int w, int h)
resize_maxpool_layer(&l, w, h);
}else if(l.type == REGION){
resize_region_layer(&l, w, h);
}else if (l.type == YOLO) {
resize_yolo_layer(&l, w, h);
}else if (l.type == YOLO) {
resize_yolo_layer(&l, w, h);
}else if(l.type == ROUTE){
resize_route_layer(&l, net);
}else if (l.type == SHORTCUT) {
resize_shortcut_layer(&l, w, h);
}else if (l.type == UPSAMPLE) {
resize_upsample_layer(&l, w, h);
}else if (l.type == SHORTCUT) {
resize_shortcut_layer(&l, w, h);
}else if (l.type == UPSAMPLE) {
resize_upsample_layer(&l, w, h);
}else if(l.type == REORG){
resize_reorg_layer(&l, w, h);
}else if(l.type == AVGPOOL){
@ -431,7 +431,7 @@ int resize_network(network *net, int w, int h)
}else if(l.type == COST){
resize_cost_layer(&l, inputs);
}else{
fprintf(stderr, "Resizing type %d \n", (int)l.type);
fprintf(stderr, "Resizing type %d \n", (int)l.type);
error("Cannot resize this type of layer");
}
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
@ -443,9 +443,9 @@ int resize_network(network *net, int w, int h)
}
#ifdef GPU
if(gpu_index >= 0){
printf(" try to allocate workspace = %zu * sizeof(float), ", workspace_size / sizeof(float) + 1);
printf(" try to allocate workspace = %zu * sizeof(float), ", workspace_size / sizeof(float) + 1);
net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1);
printf(" CUDA allocate done! \n");
printf(" CUDA allocate done! \n");
}else {
free(net->workspace);
net->workspace = calloc(1, workspace_size);
@ -551,112 +551,112 @@ float *network_predict(network net, float *input)
int num_detections(network *net, float thresh)
{
int i;
int s = 0;
for (i = 0; i < net->n; ++i) {
layer l = net->layers[i];
if (l.type == YOLO) {
s += yolo_num_detections(l, thresh);
}
if (l.type == DETECTION || l.type == REGION) {
s += l.w*l.h*l.n;
}
}
return s;
int i;
int s = 0;
for (i = 0; i < net->n; ++i) {
layer l = net->layers[i];
if (l.type == YOLO) {
s += yolo_num_detections(l, thresh);
}
if (l.type == DETECTION || l.type == REGION) {
s += l.w*l.h*l.n;
}
}
return s;
}
detection *make_network_boxes(network *net, float thresh, int *num)
{
layer l = net->layers[net->n - 1];
int i;
int nboxes = num_detections(net, thresh);
if (num) *num = nboxes;
detection *dets = calloc(nboxes, sizeof(detection));
for (i = 0; i < nboxes; ++i) {
dets[i].prob = calloc(l.classes, sizeof(float));
if (l.coords > 4) {
dets[i].mask = calloc(l.coords - 4, sizeof(float));
}
}
return dets;
layer l = net->layers[net->n - 1];
int i;
int nboxes = num_detections(net, thresh);
if (num) *num = nboxes;
detection *dets = calloc(nboxes, sizeof(detection));
for (i = 0; i < nboxes; ++i) {
dets[i].prob = calloc(l.classes, sizeof(float));
if (l.coords > 4) {
dets[i].mask = calloc(l.coords - 4, sizeof(float));
}
}
return dets;
}
void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
{
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
int i, j;
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float));
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
for (j = 0; j < l.w*l.h*l.n; ++j) {
dets[j].classes = l.classes;
dets[j].bbox = boxes[j];
dets[j].objectness = 1;
for (i = 0; i < l.classes; ++i) {
dets[j].prob[i] = probs[j][i];
}
}
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
int i, j;
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float));
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
for (j = 0; j < l.w*l.h*l.n; ++j) {
dets[j].classes = l.classes;
dets[j].bbox = boxes[j];
dets[j].objectness = 1;
for (i = 0; i < l.classes; ++i) {
dets[j].prob[i] = probs[j][i];
}
}
free(boxes);
free_ptrs((void **)probs, l.w*l.h*l.n);
free(boxes);
free_ptrs((void **)probs, l.w*l.h*l.n);
//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
}
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
{
int prev_classes = -1;
int j;
for (j = 0; j < net->n; ++j) {
layer l = net->layers[j];
if (l.type == YOLO) {
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
dets += count;
if (prev_classes < 0) prev_classes = l.classes;
else if (prev_classes != l.classes) {
printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
prev_classes, l.classes);
}
}
if (l.type == REGION) {
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
dets += l.w*l.h*l.n;
}
if (l.type == DETECTION) {
get_detection_detections(l, w, h, thresh, dets);
dets += l.w*l.h*l.n;
}
}
int prev_classes = -1;
int j;
for (j = 0; j < net->n; ++j) {
layer l = net->layers[j];
if (l.type == YOLO) {
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
dets += count;
if (prev_classes < 0) prev_classes = l.classes;
else if (prev_classes != l.classes) {
printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
prev_classes, l.classes);
}
}
if (l.type == REGION) {
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
dets += l.w*l.h*l.n;
}
if (l.type == DETECTION) {
get_detection_detections(l, w, h, thresh, dets);
dets += l.w*l.h*l.n;
}
}
}
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
{
detection *dets = make_network_boxes(net, thresh, num);
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
return dets;
detection *dets = make_network_boxes(net, thresh, num);
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
return dets;
}
void free_detections(detection *dets, int n)
{
int i;
for (i = 0; i < n; ++i) {
free(dets[i].prob);
if (dets[i].mask) free(dets[i].mask);
}
free(dets);
int i;
for (i = 0; i < n; ++i) {
free(dets[i].prob);
if (dets[i].mask) free(dets[i].mask);
}
free(dets);
}
float *network_predict_image(network *net, image im)
{
//image imr = letterbox_image(im, net->w, net->h);
image imr = resize_image(im, net->w, net->h);
set_batch_network(net, 1);
float *p = network_predict(*net, imr.data);
free_image(imr);
return p;
//image imr = letterbox_image(im, net->w, net->h);
image imr = resize_image(im, net->w, net->h);
set_batch_network(net, 1);
float *p = network_predict(*net, imr.data);
free_image(imr);
return p;
}
int network_width(network *net) { return net->w; }
@ -780,70 +780,70 @@ float network_accuracy_multi(network net, data d, int n)
void free_network(network net)
{
int i;
for (i = 0; i < net.n; ++i) {
free_layer(net.layers[i]);
}
free(net.layers);
int i;
for (i = 0; i < net.n; ++i) {
free_layer(net.layers[i]);
}
free(net.layers);
free(net.scales);
free(net.steps);
free(net.seen);
free(net.scales);
free(net.steps);
free(net.seen);
#ifdef GPU
if (gpu_index >= 0) cuda_free(net.workspace);
else free(net.workspace);
if (*net.input_gpu) cuda_free(*net.input_gpu);
if (*net.truth_gpu) cuda_free(*net.truth_gpu);
if (net.input_gpu) free(net.input_gpu);
if (net.truth_gpu) free(net.truth_gpu);
if (gpu_index >= 0) cuda_free(net.workspace);
else free(net.workspace);
if (*net.input_gpu) cuda_free(*net.input_gpu);
if (*net.truth_gpu) cuda_free(*net.truth_gpu);
if (net.input_gpu) free(net.input_gpu);
if (net.truth_gpu) free(net.truth_gpu);
if (*net.input16_gpu) cuda_free(*net.input16_gpu);
if (*net.output16_gpu) cuda_free(*net.output16_gpu);
if (net.input16_gpu) free(net.input16_gpu);
if (net.output16_gpu) free(net.output16_gpu);
if (net.max_input16_size) free(net.max_input16_size);
if (net.max_output16_size) free(net.max_output16_size);
if (*net.input16_gpu) cuda_free(*net.input16_gpu);
if (*net.output16_gpu) cuda_free(*net.output16_gpu);
if (net.input16_gpu) free(net.input16_gpu);
if (net.output16_gpu) free(net.output16_gpu);
if (net.max_input16_size) free(net.max_input16_size);
if (net.max_output16_size) free(net.max_output16_size);
#else
free(net.workspace);
free(net.workspace);
#endif
}
void fuse_conv_batchnorm(network net)
{
int j;
for (j = 0; j < net.n; ++j) {
layer *l = &net.layers[j];
int j;
for (j = 0; j < net.n; ++j) {
layer *l = &net.layers[j];
if (l->type == CONVOLUTIONAL) {
//printf(" Merges Convolutional-%d and batch_norm \n", j);
if (l->type == CONVOLUTIONAL) {
//printf(" Merges Convolutional-%d and batch_norm \n", j);
if (l->batch_normalize) {
int f;
for (f = 0; f < l->n; ++f)
{
l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
if (l->batch_normalize) {
int f;
for (f = 0; f < l->n; ++f)
{
l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
const size_t filter_size = l->size*l->size*l->c;
int i;
for (i = 0; i < filter_size; ++i) {
int w_index = f*filter_size + i;
const size_t filter_size = l->size*l->size*l->c;
int i;
for (i = 0; i < filter_size; ++i) {
int w_index = f*filter_size + i;
l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
}
}
l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f]) + .000001f);
}
}
l->batch_normalize = 0;
l->batch_normalize = 0;
#ifdef GPU
if (gpu_index >= 0) {
push_convolutional_layer(*l);
}
if (gpu_index >= 0) {
push_convolutional_layer(*l);
}
#endif
}
}
else {
//printf(" Fusion skip layer type: %d \n", l->type);
}
}
}
}
else {
//printf(" Fusion skip layer type: %d \n", l->type);
}
}
}