mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
tree stuff
This commit is contained in:
@ -32,31 +32,25 @@ softmax_layer make_softmax_layer(int batch, int inputs, int groups)
|
||||
return l;
|
||||
}
|
||||
|
||||
void softmax_array(float *input, int n, float temp, float *output)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
float largest = -FLT_MAX;
|
||||
for(i = 0; i < n; ++i){
|
||||
if(input[i] > largest) largest = input[i];
|
||||
}
|
||||
for(i = 0; i < n; ++i){
|
||||
sum += exp(input[i]/temp-largest/temp);
|
||||
}
|
||||
if(sum) sum = largest/temp+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < n; ++i){
|
||||
output[i] = exp(input[i]/temp-sum);
|
||||
}
|
||||
}
|
||||
|
||||
void forward_softmax_layer(const softmax_layer l, network_state state)
|
||||
{
|
||||
int b;
|
||||
int inputs = l.inputs / l.groups;
|
||||
int batch = l.batch * l.groups;
|
||||
for(b = 0; b < batch; ++b){
|
||||
softmax_array(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs);
|
||||
if(l.softmax_tree){
|
||||
for(b = 0; b < batch; ++b){
|
||||
int i;
|
||||
int count = 0;
|
||||
for(i = 0; i < l.softmax_tree->groups; ++i){
|
||||
int group_size = l.softmax_tree->group_size[i];
|
||||
softmax(state.input+b*inputs + count, group_size, l.temperature, l.output+b*inputs + count);
|
||||
count += group_size;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for(b = 0; b < batch; ++b){
|
||||
softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -68,3 +62,54 @@ void backward_softmax_layer(const softmax_layer l, network_state state)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_softmax_layer_output(const softmax_layer layer)
|
||||
{
|
||||
cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
|
||||
}
|
||||
|
||||
void forward_softmax_layer_gpu(const softmax_layer l, network_state state)
|
||||
{
|
||||
int inputs = l.inputs / l.groups;
|
||||
int batch = l.batch * l.groups;
|
||||
int b;
|
||||
if(l.softmax_tree){
|
||||
if(0){
|
||||
float *buff = calloc(inputs * batch, sizeof(float));
|
||||
cuda_pull_array(state.input, buff, batch * inputs);
|
||||
state.input = buff;
|
||||
forward_softmax_layer(l, state);
|
||||
cuda_push_array(l.output_gpu, l.output, batch*inputs);
|
||||
free(buff);
|
||||
} else {
|
||||
int i;
|
||||
const int nstreams = 32;
|
||||
cudaStream_t streams[nstreams];
|
||||
for (i = 0; i < nstreams; ++i) {
|
||||
cudaStreamCreate(&streams[i]);
|
||||
}
|
||||
for (b = 0; b < batch; ++b) {
|
||||
int i;
|
||||
int count = 0;
|
||||
for (i = 0; i < l.softmax_tree->groups; ++i) {
|
||||
int group_size = l.softmax_tree->group_size[i];
|
||||
softmax_gpu(state.input+b*inputs + count, group_size, 1, l.temperature, l.output_gpu+b*inputs + count, streams[(b*l.softmax_tree->groups + i) % nstreams]);
|
||||
count += group_size;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < nstreams; ++i){
|
||||
cudaStreamDestroy(streams[i]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
softmax_gpu(state.input, inputs, batch, l.temperature, l.output_gpu, 0);
|
||||
}
|
||||
}
|
||||
|
||||
void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
|
||||
{
|
||||
axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user