refactoring and added DARK ZONE

This commit is contained in:
Joseph Redmon
2015-03-11 22:20:15 -07:00
parent f047cfff99
commit dcb000b553
37 changed files with 640 additions and 918 deletions

View File

@ -9,15 +9,11 @@
#include <stdlib.h>
#include <string.h>
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay)
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
{
int i;
connected_layer *layer = calloc(1, sizeof(connected_layer));
layer->learning_rate = learning_rate;
layer->momentum = momentum;
layer->decay = decay;
layer->inputs = inputs;
layer->outputs = outputs;
layer->batch=batch;
@ -59,41 +55,17 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
return layer;
}
void secret_update_connected_layer(connected_layer *layer)
void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay)
{
int n = layer->outputs*layer->inputs;
float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1);
float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
* sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
float cos = dot/mag;
if(cos > .3) layer->learning_rate *= 1.1;
else if (cos < -.3) layer-> learning_rate /= 1.1;
axpy_cpu(layer.outputs, learning_rate, layer.bias_updates, 1, layer.biases, 1);
scal_cpu(layer.outputs, momentum, layer.bias_updates, 1);
scal_cpu(n, layer->momentum, layer->weight_prev, 1);
axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1);
scal_cpu(n, 0, layer->weight_updates, 1);
scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
axpy_cpu(layer.inputs*layer.outputs, -decay, layer.weights, 1, layer.weight_updates, 1);
axpy_cpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates, 1, layer.weights, 1);
scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1);
}
void update_connected_layer(connected_layer layer)
{
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
}
void forward_connected_layer(connected_layer layer, float *input)
void forward_connected_layer(connected_layer layer, network_state state)
{
int i;
for(i = 0; i < layer.batch; ++i){
@ -102,14 +74,14 @@ void forward_connected_layer(connected_layer layer, float *input)
int m = layer.batch;
int k = layer.inputs;
int n = layer.outputs;
float *a = input;
float *a = state.input;
float *b = layer.weights;
float *c = layer.output;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
}
void backward_connected_layer(connected_layer layer, float *input, float *delta)
void backward_connected_layer(connected_layer layer, network_state state)
{
int i;
float alpha = 1./layer.batch;
@ -120,7 +92,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
int m = layer.inputs;
int k = layer.batch;
int n = layer.outputs;
float *a = input;
float *a = state.input;
float *b = layer.delta;
float *c = layer.weight_updates;
gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@ -131,7 +103,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
a = layer.delta;
b = layer.weights;
c = delta;
c = state.delta;
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
}
@ -154,23 +126,17 @@ void push_connected_layer(connected_layer layer)
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
}
void update_connected_layer_gpu(connected_layer layer)
void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay)
{
/*
cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs));
*/
axpy_ongpu(layer.outputs, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1);
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1);
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1);
axpy_ongpu(layer.inputs*layer.outputs, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
axpy_ongpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1);
}
void forward_connected_layer_gpu(connected_layer layer, float * input)
void forward_connected_layer_gpu(connected_layer layer, network_state state)
{
int i;
for(i = 0; i < layer.batch; ++i){
@ -179,14 +145,14 @@ void forward_connected_layer_gpu(connected_layer layer, float * input)
int m = layer.batch;
int k = layer.inputs;
int n = layer.outputs;
float * a = input;
float * a = state.input;
float * b = layer.weights_gpu;
float * c = layer.output_gpu;
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
}
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta)
void backward_connected_layer_gpu(connected_layer layer, network_state state)
{
float alpha = 1./layer.batch;
int i;
@ -197,7 +163,7 @@ void backward_connected_layer_gpu(connected_layer layer, float * input, float *
int m = layer.inputs;
int k = layer.batch;
int n = layer.outputs;
float * a = input;
float * a = state.input;
float * b = layer.delta_gpu;
float * c = layer.weight_updates_gpu;
gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@ -208,7 +174,7 @@ void backward_connected_layer_gpu(connected_layer layer, float * input, float *
a = layer.delta_gpu;
b = layer.weights_gpu;
c = delta;
c = state.delta;
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
}