refactoring and added DARK ZONE

This commit is contained in:
Joseph Redmon
2015-03-11 22:20:15 -07:00
parent f047cfff99
commit dcb000b553
37 changed files with 640 additions and 918 deletions

View File

@ -4,6 +4,7 @@
#include "image.h"
#include "data.h"
#include "utils.h"
#include "params.h"
#include "crop_layer.h"
#include "connected_layer.h"
@ -13,7 +14,6 @@
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
@ -36,8 +36,6 @@ char *get_layer_string(LAYER_TYPE a)
return "normalization";
case DROPOUT:
return "dropout";
case FREEWEIGHT:
return "freeweight";
case CROP:
return "crop";
case COST:
@ -48,16 +46,18 @@ char *get_layer_string(LAYER_TYPE a)
return "none";
}
network make_network(int n, int batch)
network make_network(int n)
{
network net;
net.n = n;
net.batch = batch;
net.layers = calloc(net.n, sizeof(void *));
net.types = calloc(net.n, sizeof(LAYER_TYPE));
net.outputs = 0;
net.output = 0;
net.seen = 0;
net.batch = 0;
net.inputs = 0;
net.h = net.w = net.c = 0;
#ifdef GPU
net.input_gpu = calloc(1, sizeof(float *));
net.truth_gpu = calloc(1, sizeof(float *));
@ -65,68 +65,41 @@ network make_network(int n, int batch)
return net;
}
void forward_network(network net, float *input, float *truth, int train)
void forward_network(network net, network_state state)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer(layer, input);
input = layer.output;
forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
}
else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
forward_deconvolutional_layer(layer, input);
input = layer.output;
forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
forward_detection_layer(layer, input, truth);
input = layer.output;
forward_detection_layer(*(detection_layer *)net.layers[i], state);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer(layer, input);
input = layer.output;
forward_connected_layer(*(connected_layer *)net.layers[i], state);
}
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
forward_crop_layer(layer, train, input);
input = layer.output;
forward_crop_layer(*(crop_layer *)net.layers[i], state);
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
forward_cost_layer(layer, input, truth);
forward_cost_layer(*(cost_layer *)net.layers[i], state);
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
input = layer.output;
forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer(layer, input);
input = layer.output;
forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
forward_normalization_layer(layer, input);
input = layer.output;
forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
}
else if(net.types[i] == DROPOUT){
if(!train) continue;
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer(layer, input);
input = layer.output;
forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
}
else if(net.types[i] == FREEWEIGHT){
if(!train) continue;
//freeweight_layer layer = *(freeweight_layer *)net.layers[i];
//forward_freeweight_layer(layer, input);
}
//char buff[256];
//sprintf(buff, "layer %d", i);
//cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
state.input = get_network_output_layer(net, i);
}
}
@ -136,15 +109,15 @@ void update_network(network net)
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer(layer);
update_convolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
}
else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
update_deconvolutional_layer(layer);
update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer(layer);
update_connected_layer(layer, net.learning_rate, net.momentum, net.decay);
}
}
}
@ -152,37 +125,27 @@ void update_network(network net)
float *get_network_output_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
return ((convolutional_layer *)net.layers[i]) -> output;
} else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
return layer.output;
return ((deconvolutional_layer *)net.layers[i]) -> output;
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
return ((maxpool_layer *)net.layers[i]) -> output;
} else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return layer.output;
return ((detection_layer *)net.layers[i]) -> output;
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output;
return ((softmax_layer *)net.layers[i]) -> output;
} else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == FREEWEIGHT){
return get_network_output_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
return ((connected_layer *)net.layers[i]) -> output;
} else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
return layer.output;
return ((crop_layer *)net.layers[i]) -> output;
} else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
return layer.output;
return ((normalization_layer *)net.layers[i]) -> output;
}
return 0;
}
float *get_network_output(network net)
{
int i;
@ -210,8 +173,6 @@ float *get_network_delta_layer(network net, int i)
} else if(net.types[i] == DROPOUT){
if(i == 0) return 0;
return get_network_delta_layer(net, i-1);
} else if(net.types[i] == FREEWEIGHT){
return get_network_delta_layer(net, i-1);
} else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta;
@ -257,54 +218,53 @@ int get_predicted_class_network(network net)
return max_index(out, k);
}
void backward_network(network net, float *input, float *truth)
void backward_network(network net, network_state state)
{
int i;
float *prev_input;
float *prev_delta;
float *original_input = state.input;
for(i = net.n-1; i >= 0; --i){
if(i == 0){
prev_input = input;
prev_delta = 0;
state.input = original_input;
state.delta = 0;
}else{
prev_input = get_network_output_layer(net, i-1);
prev_delta = get_network_delta_layer(net, i-1);
state.input = get_network_output_layer(net, i-1);
state.delta = get_network_delta_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
backward_convolutional_layer(layer, prev_input, prev_delta);
backward_convolutional_layer(layer, state);
} else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
backward_deconvolutional_layer(layer, prev_input, prev_delta);
backward_deconvolutional_layer(layer, state);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
if(i != 0) backward_maxpool_layer(layer, prev_delta);
if(i != 0) backward_maxpool_layer(layer, state);
}
else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i];
backward_dropout_layer(layer, prev_delta);
backward_dropout_layer(layer, state);
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
backward_detection_layer(layer, prev_input, prev_delta);
backward_detection_layer(layer, state);
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
if(i != 0) backward_normalization_layer(layer, state);
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
if(i != 0) backward_softmax_layer(layer, prev_delta);
if(i != 0) backward_softmax_layer(layer, state);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer(layer, prev_input, prev_delta);
backward_connected_layer(layer, state);
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer(layer, prev_input, prev_delta);
backward_cost_layer(layer, state);
}
}
}
@ -314,8 +274,12 @@ float train_network_datum(network net, float *x, float *y)
#ifdef GPU
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
forward_network(net, x, y, 1);
backward_network(net, x, y);
network_state state;
state.input = x;
state.truth = y;
state.train = 1;
forward_network(net, state);
backward_network(net, state);
float error = get_network_cost(net);
update_network(net);
return error;
@ -361,15 +325,17 @@ float train_network(network net, data d)
float train_network_batch(network net, data d, int n)
{
int i,j;
network_state state;
state.train = 1;
float sum = 0;
int batch = 2;
for(i = 0; i < n; ++i){
for(j = 0; j < batch; ++j){
int index = rand()%d.X.rows;
float *x = d.X.vals[index];
float *y = d.y.vals[index];
forward_network(net, x, y, 1);
backward_network(net, x, y);
state.input = d.X.vals[index];
state.truth = d.y.vals[index];
forward_network(net, state);
backward_network(net, state);
sum += get_network_cost(net);
}
update_network(net);
@ -377,28 +343,6 @@ float train_network_batch(network net, data d, int n)
return (float)sum/(n*batch);
}
void set_learning_network(network *net, float rate, float momentum, float decay)
{
int i;
net->learning_rate=rate;
net->momentum = momentum;
net->decay = decay;
for(i = 0; i < net->n; ++i){
if(net->types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
layer->learning_rate=rate;
layer->momentum = momentum;
layer->decay = decay;
}
else if(net->types[i] == CONNECTED){
connected_layer *layer = (connected_layer *)net->layers[i];
layer->learning_rate=rate;
layer->momentum = momentum;
layer->decay = decay;
}
}
}
void set_batch_network(network *net, int b)
{
net->batch = b;
@ -425,10 +369,6 @@ void set_batch_network(network *net, int b)
detection_layer *layer = (detection_layer *) net->layers[i];
layer->batch = b;
}
else if(net->types[i] == FREEWEIGHT){
freeweight_layer *layer = (freeweight_layer *) net->layers[i];
layer->batch = b;
}
else if(net->types[i] == SOFTMAX){
softmax_layer *layer = (softmax_layer *)net->layers[i];
layer->batch = b;
@ -472,15 +412,11 @@ int get_network_input_size_layer(network net, int i)
crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.h*layer.w;
}
else if(net.types[i] == FREEWEIGHT){
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
return layer.inputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
printf("Can't find input size\n");
fprintf(stderr, "Can't find input size\n");
return 0;
}
@ -505,7 +441,7 @@ int get_network_output_size_layer(network net, int i)
image output = get_maxpool_image(layer);
return output.h*output.w*output.c;
}
else if(net.types[i] == CROP){
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.crop_height*layer.crop_width;
}
@ -517,15 +453,11 @@ int get_network_output_size_layer(network net, int i)
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
}
else if(net.types[i] == FREEWEIGHT){
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
return layer.inputs;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs;
}
printf("Can't find output size\n");
fprintf(stderr, "Can't find output size\n");
return 0;
}
@ -650,11 +582,16 @@ void top_predictions(network net, int k, int *index)
float *network_predict(network net, float *input)
{
#ifdef GPU
#ifdef GPU
if(gpu_index >= 0) return network_predict_gpu(net, input);
#endif
#endif
forward_network(net, input, 0, 0);
network_state state;
state.input = input;
state.truth = 0;
state.train = 0;
state.delta = 0;
forward_network(net, state);
float *out = get_network_output(net);
return out;
}