mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
refactoring and added DARK ZONE
This commit is contained in:
474
src/parser.c
474
src/parser.c
@ -14,7 +14,6 @@
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
#include "detection_layer.h"
|
||||
#include "freeweight_layer.h"
|
||||
#include "list.h"
|
||||
#include "option_list.h"
|
||||
#include "utils.h"
|
||||
@ -24,12 +23,12 @@ typedef struct{
|
||||
list *options;
|
||||
}section;
|
||||
|
||||
int is_network(section *s);
|
||||
int is_convolutional(section *s);
|
||||
int is_deconvolutional(section *s);
|
||||
int is_connected(section *s);
|
||||
int is_maxpool(section *s);
|
||||
int is_dropout(section *s);
|
||||
int is_freeweight(section *s);
|
||||
int is_softmax(section *s);
|
||||
int is_crop(section *s);
|
||||
int is_cost(section *s);
|
||||
@ -69,38 +68,31 @@ void parse_data(char *data, float *a, int n)
|
||||
}
|
||||
}
|
||||
|
||||
deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count)
|
||||
typedef struct size_params{
|
||||
int batch;
|
||||
int inputs;
|
||||
int h;
|
||||
int w;
|
||||
int c;
|
||||
} size_params;
|
||||
|
||||
deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
|
||||
{
|
||||
int h,w,c;
|
||||
float learning_rate, momentum, decay;
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
char *activation_s = option_find_str(options, "activation", "logistic");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
learning_rate = option_find_float(options, "learning_rate", .001);
|
||||
momentum = option_find_float(options, "momentum", .9);
|
||||
decay = option_find_float(options, "decay", .0001);
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
|
||||
momentum = option_find_float_quiet(options, "momentum", net->momentum);
|
||||
decay = option_find_float_quiet(options, "decay", net->decay);
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before deconvolutional layer must output image.");
|
||||
}
|
||||
deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
|
||||
|
||||
int batch,h,w,c;
|
||||
h = params.h;
|
||||
w = params.w;
|
||||
c = params.c;
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
|
||||
|
||||
deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
parse_data(weights, layer->filters, c*n*size*size);
|
||||
@ -112,39 +104,24 @@ deconvolutional_layer *parse_deconvolutional(list *options, network *net, int co
|
||||
return layer;
|
||||
}
|
||||
|
||||
convolutional_layer *parse_convolutional(list *options, network *net, int count)
|
||||
convolutional_layer *parse_convolutional(list *options, size_params params)
|
||||
{
|
||||
int h,w,c;
|
||||
float learning_rate, momentum, decay;
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
int pad = option_find_int(options, "pad",0);
|
||||
char *activation_s = option_find_str(options, "activation", "logistic");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
learning_rate = option_find_float(options, "learning_rate", .001);
|
||||
momentum = option_find_float(options, "momentum", .9);
|
||||
decay = option_find_float(options, "decay", .0001);
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
|
||||
momentum = option_find_float_quiet(options, "momentum", net->momentum);
|
||||
decay = option_find_float_quiet(options, "decay", net->decay);
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
|
||||
|
||||
int batch,h,w,c;
|
||||
h = params.h;
|
||||
w = params.w;
|
||||
c = params.c;
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
|
||||
|
||||
convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
parse_data(weights, layer->filters, c*n*size*size);
|
||||
@ -156,33 +133,18 @@ convolutional_layer *parse_convolutional(list *options, network *net, int count)
|
||||
return layer;
|
||||
}
|
||||
|
||||
connected_layer *parse_connected(list *options, network *net, int count)
|
||||
connected_layer *parse_connected(list *options, size_params params)
|
||||
{
|
||||
int input;
|
||||
float learning_rate, momentum, decay;
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "logistic");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
learning_rate = option_find_float(options, "learning_rate", .001);
|
||||
momentum = option_find_float(options, "momentum", .9);
|
||||
decay = option_find_float(options, "decay", .0001);
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
}else{
|
||||
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
|
||||
momentum = option_find_float_quiet(options, "momentum", net->momentum);
|
||||
decay = option_find_float_quiet(options, "decay", net->decay);
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
|
||||
|
||||
connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
parse_data(biases, layer->biases, output);
|
||||
parse_data(weights, layer->weights, input*output);
|
||||
parse_data(weights, layer->weights, params.inputs*output);
|
||||
#ifdef GPU
|
||||
if(weights || biases) push_connected_layer(*layer);
|
||||
#endif
|
||||
@ -190,235 +152,188 @@ connected_layer *parse_connected(list *options, network *net, int count)
|
||||
return layer;
|
||||
}
|
||||
|
||||
softmax_layer *parse_softmax(list *options, network *net, int count)
|
||||
softmax_layer *parse_softmax(list *options, size_params params)
|
||||
{
|
||||
int input;
|
||||
int groups = option_find_int(options, "groups",1);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
|
||||
softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
detection_layer *parse_detection(list *options, network *net, int count)
|
||||
detection_layer *parse_detection(list *options, size_params params)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
int coords = option_find_int(options, "coords", 1);
|
||||
int classes = option_find_int(options, "classes", 1);
|
||||
int rescore = option_find_int(options, "rescore", 1);
|
||||
detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
|
||||
detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
cost_layer *parse_cost(list *options, network *net, int count)
|
||||
cost_layer *parse_cost(list *options, size_params params)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
char *type_s = option_find_str(options, "type", "sse");
|
||||
COST_TYPE type = get_cost_type(type_s);
|
||||
cost_layer *layer = make_cost_layer(net->batch, input, type);
|
||||
cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
crop_layer *parse_crop(list *options, network *net, int count)
|
||||
crop_layer *parse_crop(list *options, size_params params)
|
||||
{
|
||||
float learning_rate, momentum, decay;
|
||||
int h,w,c;
|
||||
int crop_height = option_find_int(options, "crop_height",1);
|
||||
int crop_width = option_find_int(options, "crop_width",1);
|
||||
int flip = option_find_int(options, "flip",0);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
learning_rate = option_find_float(options, "learning_rate", .001);
|
||||
momentum = option_find_float(options, "momentum", .9);
|
||||
decay = option_find_float(options, "decay", .0001);
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before crop layer must output image.");
|
||||
}
|
||||
crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
|
||||
|
||||
int batch,h,w,c;
|
||||
h = params.h;
|
||||
w = params.w;
|
||||
c = params.c;
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before crop layer must output image.");
|
||||
|
||||
crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
maxpool_layer *parse_maxpool(list *options, network *net, int count)
|
||||
maxpool_layer *parse_maxpool(list *options, size_params params)
|
||||
{
|
||||
int h,w,c;
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
int size = option_find_int(options, "size",stride);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
|
||||
|
||||
int batch,h,w,c;
|
||||
h = params.h;
|
||||
w = params.w;
|
||||
c = params.c;
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before maxpool layer must output image.");
|
||||
|
||||
maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
/*
|
||||
freeweight_layer *parse_freeweight(list *options, network *net, int count)
|
||||
dropout_layer *parse_dropout(list *options, size_params params)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
freeweight_layer *layer = make_freeweight_layer(net->batch,input);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
*/
|
||||
|
||||
dropout_layer *parse_dropout(list *options, network *net, int count)
|
||||
{
|
||||
int input;
|
||||
float probability = option_find_float(options, "probability", .5);
|
||||
if(count == 0){
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
input = option_find_int(options, "input",1);
|
||||
float learning_rate = option_find_float(options, "learning_rate", .001);
|
||||
float momentum = option_find_float(options, "momentum", .9);
|
||||
float decay = option_find_float(options, "decay", .0001);
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
|
||||
dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
normalization_layer *parse_normalization(list *options, network *net, int count)
|
||||
normalization_layer *parse_normalization(list *options, size_params params)
|
||||
{
|
||||
int h,w,c;
|
||||
int size = option_find_int(options, "size",1);
|
||||
float alpha = option_find_float(options, "alpha", 0.);
|
||||
float beta = option_find_float(options, "beta", 1.);
|
||||
float kappa = option_find_float(options, "kappa", 1.);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
|
||||
|
||||
int batch,h,w,c;
|
||||
h = params.h;
|
||||
w = params.w;
|
||||
c = params.c;
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before normalization layer must output image.");
|
||||
|
||||
normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
void parse_net_options(list *options, network *net)
|
||||
{
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->learning_rate = option_find_float(options, "learning_rate", .001);
|
||||
net->momentum = option_find_float(options, "momentum", .9);
|
||||
net->decay = option_find_float(options, "decay", .0001);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
|
||||
net->h = option_find_int_quiet(options, "height",0);
|
||||
net->w = option_find_int_quiet(options, "width",0);
|
||||
net->c = option_find_int_quiet(options, "channels",0);
|
||||
net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
|
||||
if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
|
||||
}
|
||||
|
||||
network parse_network_cfg(char *filename)
|
||||
{
|
||||
list *sections = read_cfg(filename);
|
||||
network net = make_network(sections->size, 0);
|
||||
|
||||
node *n = sections->front;
|
||||
if(!n) error("Config file has no sections");
|
||||
network net = make_network(sections->size - 1);
|
||||
size_params params;
|
||||
|
||||
section *s = (section *)n->val;
|
||||
list *options = s->options;
|
||||
if(!is_network(s)) error("First section must be [net] or [network]");
|
||||
parse_net_options(options, &net);
|
||||
|
||||
params.h = net.h;
|
||||
params.w = net.w;
|
||||
params.c = net.c;
|
||||
params.inputs = net.inputs;
|
||||
params.batch = net.batch;
|
||||
|
||||
n = n->next;
|
||||
int count = 0;
|
||||
while(n){
|
||||
section *s = (section *)n->val;
|
||||
list *options = s->options;
|
||||
fprintf(stderr, "%d: ", count);
|
||||
s = (section *)n->val;
|
||||
options = s->options;
|
||||
if(is_convolutional(s)){
|
||||
convolutional_layer *layer = parse_convolutional(options, &net, count);
|
||||
convolutional_layer *layer = parse_convolutional(options, params);
|
||||
net.types[count] = CONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_deconvolutional(s)){
|
||||
deconvolutional_layer *layer = parse_deconvolutional(options, &net, count);
|
||||
deconvolutional_layer *layer = parse_deconvolutional(options, params);
|
||||
net.types[count] = DECONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_connected(s)){
|
||||
connected_layer *layer = parse_connected(options, &net, count);
|
||||
connected_layer *layer = parse_connected(options, params);
|
||||
net.types[count] = CONNECTED;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_crop(s)){
|
||||
crop_layer *layer = parse_crop(options, &net, count);
|
||||
crop_layer *layer = parse_crop(options, params);
|
||||
net.types[count] = CROP;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_cost(s)){
|
||||
cost_layer *layer = parse_cost(options, &net, count);
|
||||
cost_layer *layer = parse_cost(options, params);
|
||||
net.types[count] = COST;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_detection(s)){
|
||||
detection_layer *layer = parse_detection(options, &net, count);
|
||||
detection_layer *layer = parse_detection(options, params);
|
||||
net.types[count] = DETECTION;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_softmax(s)){
|
||||
softmax_layer *layer = parse_softmax(options, &net, count);
|
||||
softmax_layer *layer = parse_softmax(options, params);
|
||||
net.types[count] = SOFTMAX;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_maxpool(s)){
|
||||
maxpool_layer *layer = parse_maxpool(options, &net, count);
|
||||
maxpool_layer *layer = parse_maxpool(options, params);
|
||||
net.types[count] = MAXPOOL;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_normalization(s)){
|
||||
normalization_layer *layer = parse_normalization(options, &net, count);
|
||||
normalization_layer *layer = parse_normalization(options, params);
|
||||
net.types[count] = NORMALIZATION;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_dropout(s)){
|
||||
dropout_layer *layer = parse_dropout(options, &net, count);
|
||||
dropout_layer *layer = parse_dropout(options, params);
|
||||
net.types[count] = DROPOUT;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_freeweight(s)){
|
||||
//freeweight_layer *layer = parse_freeweight(options, &net, count);
|
||||
//net.types[count] = FREEWEIGHT;
|
||||
//net.layers[count] = layer;
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
free_section(s);
|
||||
++count;
|
||||
n = n->next;
|
||||
if(n){
|
||||
image im = get_network_image_layer(net, count);
|
||||
params.h = im.h;
|
||||
params.w = im.w;
|
||||
params.c = im.c;
|
||||
params.inputs = get_network_output_size_layer(net, count);
|
||||
}
|
||||
++count;
|
||||
}
|
||||
free_list(sections);
|
||||
net.outputs = get_network_output_size(net);
|
||||
@ -448,6 +363,11 @@ int is_convolutional(section *s)
|
||||
return (strcmp(s->type, "[conv]")==0
|
||||
|| strcmp(s->type, "[convolutional]")==0);
|
||||
}
|
||||
int is_network(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[net]")==0
|
||||
|| strcmp(s->type, "[network]")==0);
|
||||
}
|
||||
int is_connected(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[conn]")==0
|
||||
@ -462,10 +382,6 @@ int is_dropout(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[dropout]")==0);
|
||||
}
|
||||
int is_freeweight(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[freeweight]")==0);
|
||||
}
|
||||
|
||||
int is_softmax(section *s)
|
||||
{
|
||||
@ -533,29 +449,11 @@ list *read_cfg(char *filename)
|
||||
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_convolutional_layer(*l);
|
||||
#endif
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n");
|
||||
if(count == 0) {
|
||||
fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"learning_rate=%g\n"
|
||||
"momentum=%g\n"
|
||||
"decay=%g\n"
|
||||
"seen=%d\n",
|
||||
l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
|
||||
} else {
|
||||
if(l->learning_rate != net.learning_rate)
|
||||
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
|
||||
if(l->momentum != net.momentum)
|
||||
fprintf(fp, "momentum=%g\n", l->momentum);
|
||||
if(l->decay != net.decay)
|
||||
fprintf(fp, "decay=%g\n", l->decay);
|
||||
}
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
@ -573,29 +471,11 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int
|
||||
|
||||
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_deconvolutional_layer(*l);
|
||||
#endif
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[deconvolutional]\n");
|
||||
if(count == 0) {
|
||||
fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"learning_rate=%g\n"
|
||||
"momentum=%g\n"
|
||||
"decay=%g\n"
|
||||
"seen=%d\n",
|
||||
l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
|
||||
} else {
|
||||
if(l->learning_rate != net.learning_rate)
|
||||
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
|
||||
if(l->momentum != net.momentum)
|
||||
fprintf(fp, "momentum=%g\n", l->momentum);
|
||||
if(l->decay != net.decay)
|
||||
fprintf(fp, "decay=%g\n", l->decay);
|
||||
}
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
@ -610,47 +490,19 @@ void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net,
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[freeweight]\n");
|
||||
if(count == 0){
|
||||
fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
|
||||
}
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[dropout]\n");
|
||||
if(count == 0){
|
||||
fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
||||
}
|
||||
fprintf(fp, "probability=%g\n\n", l->probability);
|
||||
}
|
||||
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_connected_layer(*l);
|
||||
#endif
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[connected]\n");
|
||||
if(count == 0){
|
||||
fprintf(fp, "batch=%d\n"
|
||||
"input=%d\n"
|
||||
"learning_rate=%g\n"
|
||||
"momentum=%g\n"
|
||||
"decay=%g\n"
|
||||
"seen=%d\n",
|
||||
l->batch, l->inputs, l->learning_rate, l->momentum, l->decay, net.seen);
|
||||
} else {
|
||||
if(l->learning_rate != net.learning_rate)
|
||||
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
|
||||
if(l->momentum != net.momentum)
|
||||
fprintf(fp, "momentum=%g\n", l->momentum);
|
||||
if(l->decay != net.decay)
|
||||
fprintf(fp, "decay=%g\n", l->decay);
|
||||
}
|
||||
fprintf(fp, "output=%d\n"
|
||||
"activation=%s\n",
|
||||
l->outputs,
|
||||
@ -666,39 +518,18 @@ void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
|
||||
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[crop]\n");
|
||||
if(count == 0) {
|
||||
fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"learning_rate=%g\n"
|
||||
"momentum=%g\n"
|
||||
"decay=%g\n"
|
||||
"seen=%d\n",
|
||||
l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay, net.seen);
|
||||
}
|
||||
fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
|
||||
}
|
||||
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[maxpool]\n");
|
||||
if(count == 0) fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->batch,l->h, l->w, l->c);
|
||||
fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
|
||||
}
|
||||
|
||||
void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[localresponsenormalization]\n");
|
||||
if(count == 0) fprintf(fp, "batch=%d\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n",
|
||||
l->batch,l->h, l->w, l->c);
|
||||
fprintf(fp, "size=%d\n"
|
||||
"alpha=%g\n"
|
||||
"beta=%g\n"
|
||||
@ -708,7 +539,6 @@ void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[softmax]\n");
|
||||
if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
@ -722,7 +552,6 @@ void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
|
||||
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
|
||||
if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
@ -741,33 +570,33 @@ void save_weights(network net, char *filename)
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_convolutional_layer(layer);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fwrite(layer.biases, sizeof(float), layer.n, fp);
|
||||
fwrite(layer.filters, sizeof(float), num, fp);
|
||||
}
|
||||
if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_deconvolutional_layer(layer);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fwrite(layer.biases, sizeof(float), layer.n, fp);
|
||||
fwrite(layer.filters, sizeof(float), num, fp);
|
||||
}
|
||||
if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *) net.layers[i];
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_connected_layer(layer);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
fwrite(layer.biases, sizeof(float), layer.outputs, fp);
|
||||
fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
|
||||
}
|
||||
@ -785,8 +614,7 @@ void load_weights_upto(network *net, char *filename, int cutoff)
|
||||
fread(&net->momentum, sizeof(float), 1, fp);
|
||||
fread(&net->decay, sizeof(float), 1, fp);
|
||||
fread(&net->seen, sizeof(int), 1, fp);
|
||||
set_learning_network(net, net->learning_rate, net->momentum, net->decay);
|
||||
|
||||
|
||||
int i;
|
||||
for(i = 0; i < net->n && i < cutoff; ++i){
|
||||
if(net->types[i] == CONVOLUTIONAL){
|
||||
@ -794,32 +622,32 @@ void load_weights_upto(network *net, char *filename, int cutoff)
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fread(layer.biases, sizeof(float), layer.n, fp);
|
||||
fread(layer.filters, sizeof(float), num, fp);
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_convolutional_layer(layer);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
if(net->types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fread(layer.biases, sizeof(float), layer.n, fp);
|
||||
fread(layer.filters, sizeof(float), num, fp);
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_deconvolutional_layer(layer);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
if(net->types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *) net->layers[i];
|
||||
fread(layer.biases, sizeof(float), layer.outputs, fp);
|
||||
fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_connected_layer(layer);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
@ -847,8 +675,6 @@ void save_network(network net, char *filename)
|
||||
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == FREEWEIGHT)
|
||||
print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DROPOUT)
|
||||
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == NORMALIZATION)
|
||||
|
Reference in New Issue
Block a user