refactoring and added DARK ZONE

This commit is contained in:
Joseph Redmon 2015-03-11 22:20:15 -07:00
parent f047cfff99
commit dcb000b553
37 changed files with 640 additions and 918 deletions

View File

@ -16,7 +16,7 @@ void train_captcha(char *cfgfile, char *weightfile)
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024; int imgs = 1024;
int i = net.seen/imgs; int i = net.seen/imgs;
list *plist = get_paths("/data/captcha/train.list"); list *plist = get_paths("/data/captcha/train.base");
char **paths = (char **)list_to_array(plist); char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size); printf("%d\n", plist->size);
clock_t time; clock_t time;

View File

@ -9,15 +9,11 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay) connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
{ {
int i; int i;
connected_layer *layer = calloc(1, sizeof(connected_layer)); connected_layer *layer = calloc(1, sizeof(connected_layer));
layer->learning_rate = learning_rate;
layer->momentum = momentum;
layer->decay = decay;
layer->inputs = inputs; layer->inputs = inputs;
layer->outputs = outputs; layer->outputs = outputs;
layer->batch=batch; layer->batch=batch;
@ -59,41 +55,17 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
return layer; return layer;
} }
void secret_update_connected_layer(connected_layer *layer) void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay)
{ {
int n = layer->outputs*layer->inputs; axpy_cpu(layer.outputs, learning_rate, layer.bias_updates, 1, layer.biases, 1);
float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1); scal_cpu(layer.outputs, momentum, layer.bias_updates, 1);
float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1))
* sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1));
float cos = dot/mag;
if(cos > .3) layer->learning_rate *= 1.1;
else if (cos < -.3) layer-> learning_rate /= 1.1;
scal_cpu(n, layer->momentum, layer->weight_prev, 1); axpy_cpu(layer.inputs*layer.outputs, -decay, layer.weights, 1, layer.weight_updates, 1);
axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1); axpy_cpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates, 1, layer.weights, 1);
scal_cpu(n, 0, layer->weight_updates, 1); scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1);
scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1);
axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1);
scal_cpu(layer->outputs, 0, layer->bias_updates, 1);
axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1);
axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1);
axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1);
} }
void update_connected_layer(connected_layer layer) void forward_connected_layer(connected_layer layer, network_state state)
{
axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1);
axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1);
axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1);
scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1);
}
void forward_connected_layer(connected_layer layer, float *input)
{ {
int i; int i;
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
@ -102,14 +74,14 @@ void forward_connected_layer(connected_layer layer, float *input)
int m = layer.batch; int m = layer.batch;
int k = layer.inputs; int k = layer.inputs;
int n = layer.outputs; int n = layer.outputs;
float *a = input; float *a = state.input;
float *b = layer.weights; float *b = layer.weights;
float *c = layer.output; float *c = layer.output;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
activate_array(layer.output, layer.outputs*layer.batch, layer.activation); activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
} }
void backward_connected_layer(connected_layer layer, float *input, float *delta) void backward_connected_layer(connected_layer layer, network_state state)
{ {
int i; int i;
float alpha = 1./layer.batch; float alpha = 1./layer.batch;
@ -120,7 +92,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
int m = layer.inputs; int m = layer.inputs;
int k = layer.batch; int k = layer.batch;
int n = layer.outputs; int n = layer.outputs;
float *a = input; float *a = state.input;
float *b = layer.delta; float *b = layer.delta;
float *c = layer.weight_updates; float *c = layer.weight_updates;
gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n); gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@ -131,7 +103,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
a = layer.delta; a = layer.delta;
b = layer.weights; b = layer.weights;
c = delta; c = state.delta;
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
} }
@ -154,23 +126,17 @@ void push_connected_layer(connected_layer layer)
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
} }
void update_connected_layer_gpu(connected_layer layer) void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay)
{ {
/* axpy_ongpu(layer.outputs, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1);
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs));
*/
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); axpy_ongpu(layer.inputs*layer.outputs, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1); axpy_ongpu(layer.inputs*layer.outputs, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1);
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1);
} }
void forward_connected_layer_gpu(connected_layer layer, float * input) void forward_connected_layer_gpu(connected_layer layer, network_state state)
{ {
int i; int i;
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
@ -179,14 +145,14 @@ void forward_connected_layer_gpu(connected_layer layer, float * input)
int m = layer.batch; int m = layer.batch;
int k = layer.inputs; int k = layer.inputs;
int n = layer.outputs; int n = layer.outputs;
float * a = input; float * a = state.input;
float * b = layer.weights_gpu; float * b = layer.weights_gpu;
float * c = layer.output_gpu; float * c = layer.output_gpu;
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation); activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
} }
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta) void backward_connected_layer_gpu(connected_layer layer, network_state state)
{ {
float alpha = 1./layer.batch; float alpha = 1./layer.batch;
int i; int i;
@ -197,7 +163,7 @@ void backward_connected_layer_gpu(connected_layer layer, float * input, float *
int m = layer.inputs; int m = layer.inputs;
int k = layer.batch; int k = layer.batch;
int n = layer.outputs; int n = layer.outputs;
float * a = input; float * a = state.input;
float * b = layer.delta_gpu; float * b = layer.delta_gpu;
float * c = layer.weight_updates_gpu; float * c = layer.weight_updates_gpu;
gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n); gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n);
@ -208,7 +174,7 @@ void backward_connected_layer_gpu(connected_layer layer, float * input, float *
a = layer.delta_gpu; a = layer.delta_gpu;
b = layer.weights_gpu; b = layer.weights_gpu;
c = delta; c = state.delta;
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
} }

View File

@ -2,12 +2,9 @@
#define CONNECTED_LAYER_H #define CONNECTED_LAYER_H
#include "activations.h" #include "activations.h"
#include "params.h"
typedef struct{ typedef struct{
float learning_rate;
float momentum;
float decay;
int batch; int batch;
int inputs; int inputs;
int outputs; int outputs;
@ -37,17 +34,16 @@ typedef struct{
} connected_layer; } connected_layer;
void secret_update_connected_layer(connected_layer *layer); connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay);
void forward_connected_layer(connected_layer layer, float *input); void forward_connected_layer(connected_layer layer, network_state state);
void backward_connected_layer(connected_layer layer, float *input, float *delta); void backward_connected_layer(connected_layer layer, network_state state);
void update_connected_layer(connected_layer layer); void update_connected_layer(connected_layer layer, float learning_rate, float momentum, float decay);
#ifdef GPU #ifdef GPU
void forward_connected_layer_gpu(connected_layer layer, float * input); void forward_connected_layer_gpu(connected_layer layer, network_state state);
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta); void backward_connected_layer_gpu(connected_layer layer, network_state state);
void update_connected_layer_gpu(connected_layer layer); void update_connected_layer_gpu(connected_layer layer, float learning_rate, float momentum, float decay);
void push_connected_layer(connected_layer layer); void push_connected_layer(connected_layer layer);
void pull_connected_layer(connected_layer layer); void pull_connected_layer(connected_layer layer);
#endif #endif

View File

@ -54,7 +54,7 @@ extern "C" void backward_bias_gpu(float *bias_updates, float *delta, int batch,
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in) extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
{ {
int i; int i;
int m = layer.n; int m = layer.n;
@ -65,7 +65,7 @@ extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float
bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
float * a = layer.filters_gpu; float * a = layer.filters_gpu;
float * b = layer.col_image_gpu; float * b = layer.col_image_gpu;
float * c = layer.output_gpu; float * c = layer.output_gpu;
@ -74,7 +74,7 @@ extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float
activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation); activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
} }
extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, float *in, float *delta_gpu) extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
{ {
float alpha = 1./layer.batch; float alpha = 1./layer.batch;
int i; int i;
@ -86,17 +86,17 @@ extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, floa
gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1); if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1);
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
float * a = layer.delta_gpu; float * a = layer.delta_gpu;
float * b = layer.col_image_gpu; float * b = layer.col_image_gpu;
float * c = layer.filter_updates_gpu; float * c = layer.filter_updates_gpu;
im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n); gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n);
if(delta_gpu){ if(state.delta){
float * a = layer.filters_gpu; float * a = layer.filters_gpu;
float * b = layer.delta_gpu; float * b = layer.delta_gpu;
@ -104,7 +104,7 @@ extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, floa
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w); col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w);
} }
} }
} }
@ -125,22 +125,15 @@ extern "C" void push_convolutional_layer(convolutional_layer layer)
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
} }
extern "C" void update_convolutional_layer_gpu(convolutional_layer layer) extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay)
{ {
int size = layer.size*layer.size*layer.c*layer.n; int size = layer.size*layer.size*layer.c*layer.n;
/* axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, size); scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
cuda_pull_array(layer.filters_gpu, layer.filters, size);
printf("Filter: %f updates: %f\n", mag_array(layer.filters, size), layer.learning_rate*mag_array(layer.filter_updates, size));
*/
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1); axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
//pull_convolutional_layer(layer);
} }

View File

@ -41,15 +41,11 @@ image get_convolutional_delta(convolutional_layer layer)
return float_to_image(h,w,c,layer.delta); return float_to_image(h,w,c,layer.delta);
} }
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay) convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
{ {
int i; int i;
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
layer->learning_rate = learning_rate;
layer->momentum = momentum;
layer->decay = decay;
layer->h = h; layer->h = h;
layer->w = w; layer->w = w;
layer->c = c; layer->c = c;
@ -143,7 +139,7 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
} }
void forward_convolutional_layer(const convolutional_layer layer, float *in) void forward_convolutional_layer(const convolutional_layer layer, network_state state)
{ {
int out_h = convolutional_out_height(layer); int out_h = convolutional_out_height(layer);
int out_w = convolutional_out_width(layer); int out_w = convolutional_out_width(layer);
@ -160,16 +156,16 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
float *c = layer.output; float *c = layer.output;
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
im2col_cpu(in, layer.c, layer.h, layer.w, im2col_cpu(state.input, layer.c, layer.h, layer.w,
layer.size, layer.stride, layer.pad, b); layer.size, layer.stride, layer.pad, b);
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
c += n*m; c += n*m;
in += layer.c*layer.h*layer.w; state.input += layer.c*layer.h*layer.w;
} }
activate_array(layer.output, m*n*layer.batch, layer.activation); activate_array(layer.output, m*n*layer.batch, layer.activation);
} }
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta) void backward_convolutional_layer(convolutional_layer layer, network_state state)
{ {
float alpha = 1./layer.batch; float alpha = 1./layer.batch;
int i; int i;
@ -181,40 +177,40 @@ void backward_convolutional_layer(convolutional_layer layer, float *in, float *d
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta); gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k); backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
float *a = layer.delta + i*m*k; float *a = layer.delta + i*m*k;
float *b = layer.col_image; float *b = layer.col_image;
float *c = layer.filter_updates; float *c = layer.filter_updates;
float *im = in+i*layer.c*layer.h*layer.w; float *im = state.input+i*layer.c*layer.h*layer.w;
im2col_cpu(im, layer.c, layer.h, layer.w, im2col_cpu(im, layer.c, layer.h, layer.w,
layer.size, layer.stride, layer.pad, b); layer.size, layer.stride, layer.pad, b);
gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
if(delta){ if(state.delta){
a = layer.filters; a = layer.filters;
b = layer.delta + i*m*k; b = layer.delta + i*m*k;
c = layer.col_image; c = layer.col_image;
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w); col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
} }
} }
} }
void update_convolutional_layer(convolutional_layer layer) void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay)
{ {
int size = layer.size*layer.size*layer.c*layer.n; int size = layer.size*layer.size*layer.c*layer.n;
axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); scal_cpu(layer.n, momentum, layer.bias_updates, 1);
axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1); axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
scal_cpu(size, layer.momentum, layer.filter_updates, 1); scal_cpu(size, momentum, layer.filter_updates, 1);
} }

View File

@ -2,14 +2,11 @@
#define CONVOLUTIONAL_LAYER_H #define CONVOLUTIONAL_LAYER_H
#include "cuda.h" #include "cuda.h"
#include "params.h"
#include "image.h" #include "image.h"
#include "activations.h" #include "activations.h"
typedef struct { typedef struct {
float learning_rate;
float momentum;
float decay;
int batch; int batch;
int h,w,c; int h,w,c;
int n; int n;
@ -42,9 +39,9 @@ typedef struct {
} convolutional_layer; } convolutional_layer;
#ifdef GPU #ifdef GPU
void forward_convolutional_layer_gpu(convolutional_layer layer, float * in); void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
void backward_convolutional_layer_gpu(convolutional_layer layer, float * in, float * delta_gpu); void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
void update_convolutional_layer_gpu(convolutional_layer layer); void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay);
void push_convolutional_layer(convolutional_layer layer); void push_convolutional_layer(convolutional_layer layer);
void pull_convolutional_layer(convolutional_layer layer); void pull_convolutional_layer(convolutional_layer layer);
@ -53,13 +50,13 @@ void bias_output_gpu(float *output, float *biases, int batch, int n, int size);
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size); void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
#endif #endif
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay); convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
void resize_convolutional_layer(convolutional_layer *layer, int h, int w); void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
void forward_convolutional_layer(const convolutional_layer layer, float *in); void forward_convolutional_layer(const convolutional_layer layer, network_state state);
void update_convolutional_layer(convolutional_layer layer); void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay);
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters); image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters);
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta); void backward_convolutional_layer(convolutional_layer layer, network_state state);
void bias_output(float *output, float *biases, int batch, int n, int size); void bias_output(float *output, float *biases, int batch, int n, int size);
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size); void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);

View File

@ -47,48 +47,36 @@ void push_cost_layer(cost_layer layer)
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs); cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
} }
void forward_cost_layer(cost_layer layer, float *input, float *truth) void forward_cost_layer(cost_layer layer, network_state state)
{ {
if (!truth) return; if (!state.truth) return;
copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1); copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1); axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1); *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
//printf("cost: %f\n", *layer.output); //printf("cost: %f\n", *layer.output);
} }
void backward_cost_layer(const cost_layer layer, float *input, float *delta) void backward_cost_layer(const cost_layer layer, network_state state)
{ {
copy_cpu(layer.batch*layer.inputs, layer.delta, 1, delta, 1); copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
} }
#ifdef GPU #ifdef GPU
void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth) void forward_cost_layer_gpu(cost_layer layer, network_state state)
{ {
if (!truth) return; if (!state.truth) return;
/* copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
float *in = calloc(layer.inputs*layer.batch, sizeof(float)); axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
float *t = calloc(layer.inputs*layer.batch, sizeof(float));
cuda_pull_array(input, in, layer.batch*layer.inputs);
cuda_pull_array(truth, t, layer.batch*layer.inputs);
forward_cost_layer(layer, in, t);
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
free(in);
free(t);
*/
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_gpu, 1);
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs); cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1); *(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
//printf("cost: %f\n", *layer.output);
} }
void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta) void backward_cost_layer_gpu(const cost_layer layer, network_state state)
{ {
copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1); copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
} }
#endif #endif

View File

@ -1,5 +1,6 @@
#ifndef COST_LAYER_H #ifndef COST_LAYER_H
#define COST_LAYER_H #define COST_LAYER_H
#include "params.h"
typedef enum{ typedef enum{
SSE SSE
@ -21,12 +22,12 @@ typedef struct {
COST_TYPE get_cost_type(char *s); COST_TYPE get_cost_type(char *s);
char *get_cost_string(COST_TYPE a); char *get_cost_string(COST_TYPE a);
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type); cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type);
void forward_cost_layer(const cost_layer layer, float *input, float *truth); void forward_cost_layer(const cost_layer layer, network_state state);
void backward_cost_layer(const cost_layer layer, float *input, float *delta); void backward_cost_layer(const cost_layer layer, network_state state);
#ifdef GPU #ifdef GPU
void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth); void forward_cost_layer_gpu(cost_layer layer, network_state state);
void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta); void backward_cost_layer_gpu(const cost_layer layer, network_state state);
#endif #endif
#endif #endif

View File

@ -28,7 +28,7 @@ crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int
return layer; return layer;
} }
void forward_crop_layer(const crop_layer layer, int train, float *input) void forward_crop_layer(const crop_layer layer, network_state state)
{ {
int i,j,c,b,row,col; int i,j,c,b,row,col;
int index; int index;
@ -36,7 +36,7 @@ void forward_crop_layer(const crop_layer layer, int train, float *input)
int flip = (layer.flip && rand()%2); int flip = (layer.flip && rand()%2);
int dh = rand()%(layer.h - layer.crop_height + 1); int dh = rand()%(layer.h - layer.crop_height + 1);
int dw = rand()%(layer.w - layer.crop_width + 1); int dw = rand()%(layer.w - layer.crop_width + 1);
if(!train){ if(!state.train){
flip = 0; flip = 0;
dh = (layer.h - layer.crop_height)/2; dh = (layer.h - layer.crop_height)/2;
dw = (layer.w - layer.crop_width)/2; dw = (layer.w - layer.crop_width)/2;
@ -52,7 +52,7 @@ void forward_crop_layer(const crop_layer layer, int train, float *input)
} }
row = i + dh; row = i + dh;
index = col+layer.w*(row+layer.h*(c + layer.c*b)); index = col+layer.w*(row+layer.h*(c + layer.c*b));
layer.output[count++] = input[index]; layer.output[count++] = state.input[index];
} }
} }
} }

View File

@ -2,6 +2,7 @@
#define CROP_LAYER_H #define CROP_LAYER_H
#include "image.h" #include "image.h"
#include "params.h"
typedef struct { typedef struct {
int batch; int batch;
@ -17,10 +18,10 @@ typedef struct {
image get_crop_image(crop_layer layer); image get_crop_image(crop_layer layer);
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip); crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip);
void forward_crop_layer(const crop_layer layer, int train, float *input); void forward_crop_layer(const crop_layer layer, network_state state);
#ifdef GPU #ifdef GPU
void forward_crop_layer_gpu(crop_layer layer, int train, float *input); void forward_crop_layer_gpu(crop_layer layer, network_state state);
#endif #endif
#endif #endif

View File

@ -24,12 +24,12 @@ __global__ void forward_crop_layer_kernel(float *input, int size, int c, int h,
output[count] = input[index]; output[count] = input[index];
} }
extern "C" void forward_crop_layer_gpu(crop_layer layer, int train, float *input) extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
{ {
int flip = (layer.flip && rand()%2); int flip = (layer.flip && rand()%2);
int dh = rand()%(layer.h - layer.crop_height + 1); int dh = rand()%(layer.h - layer.crop_height + 1);
int dw = rand()%(layer.w - layer.crop_width + 1); int dw = rand()%(layer.w - layer.crop_width + 1);
if(!train){ if(!state.train){
flip = 0; flip = 0;
dh = (layer.h - layer.crop_height)/2; dh = (layer.h - layer.crop_height)/2;
dw = (layer.w - layer.crop_width)/2; dw = (layer.w - layer.crop_width)/2;
@ -39,7 +39,7 @@ extern "C" void forward_crop_layer_gpu(crop_layer layer, int train, float *input
dim3 dimBlock(BLOCK, 1, 1); dim3 dimBlock(BLOCK, 1, 1);
dim3 dimGrid((size-1)/BLOCK + 1, 1, 1); dim3 dimGrid((size-1)/BLOCK + 1, 1, 1);
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.c, layer.h, layer.w, forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.c, layer.h, layer.w,
layer.crop_height, layer.crop_width, dh, dw, flip, layer.output_gpu); layer.crop_height, layer.crop_width, dh, dw, flip, layer.output_gpu);
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }

View File

@ -18,6 +18,7 @@ struct load_args{
int nw; int nw;
int jitter; int jitter;
int classes; int classes;
int background;
data *d; data *d;
}; };
@ -62,17 +63,62 @@ matrix load_image_paths(char **paths, int n, int h, int w)
return X; return X;
} }
void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip) typedef struct box{
int id;
float x,y,w,h;
} box;
box *read_boxes(char *filename, int *n)
{
box *boxes = calloc(1, sizeof(box));
FILE *file = fopen(filename, "r");
if(!file) file_error(filename);
float x, y, h, w;
int id;
int count = 0;
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
boxes = realloc(boxes, (count+1)*sizeof(box));
boxes[count].id = id;
boxes[count].x = x;
boxes[count].y = y;
boxes[count].h = h;
boxes[count].w = w;
++count;
}
fclose(file);
*n = count;
return boxes;
}
void randomize_boxes(box *b, int n)
{
int i;
for(i = 0; i < n; ++i){
box swap = b[i];
int index = rand()%n;
b[i] = b[index];
b[index] = swap;
}
}
void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip, int background)
{ {
int box_height = height/num_height; int box_height = height/num_height;
int box_width = width/num_width; int box_width = width/num_width;
char *labelpath = find_replace(path, "VOC2012/JPEGImages", "labels"); char *labelpath = find_replace(path, "VOC2012/JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt"); labelpath = find_replace(labelpath, ".jpg", ".txt");
FILE *file = fopen(labelpath, "r"); int count = 0;
if(!file) file_error(labelpath); box *boxes = read_boxes(labelpath, &count);
randomize_boxes(boxes, count);
float x, y, h, w; float x, y, h, w;
int id; int id;
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){ int i, j;
for(i = 0; i < count; ++i){
x = boxes[i].x;
y = boxes[i].y;
w = boxes[i].w;
h = boxes[i].h;
id = boxes[i].id;
if(flip) x = 1-x; if(flip) x = 1-x;
x *= width + jitter; x *= width + jitter;
y *= height + jitter; y *= height + jitter;
@ -88,23 +134,24 @@ void fill_truth_detection(char *path, float *truth, int classes, int height, int
float dw = (x - i*box_width)/box_width; float dw = (x - i*box_width)/box_width;
float dh = (y - j*box_height)/box_height; float dh = (y - j*box_height)/box_height;
//printf("%d %d %d %f %f\n", id, i, j, dh, dw);
int index = (i+j*num_width)*(4+classes); int index = (i+j*num_width)*(4+classes+background);
if(truth[index+classes]) continue; if(truth[index+classes+background]) continue;
truth[index+id] = 1; truth[index+id] = 1;
index += classes; index += classes+background;
truth[index++] = dh; truth[index++] = dh;
truth[index++] = dw; truth[index++] = dw;
truth[index++] = h*(height+jitter)/height; truth[index++] = h*(height+jitter)/height;
truth[index++] = w*(width+jitter)/width; truth[index++] = w*(width+jitter)/width;
} }
int i, j; free(boxes);
for(i = 0; i < num_height*num_width*(4+classes); i += 4+classes){ if(background){
int background = 1; for(i = 0; i < num_height*num_width*(4+classes+background); i += 4+classes+background){
for(j = i; j < i+classes; ++j) if (truth[j]) background = 0; int object = 0;
truth[i+classes-1] = background; for(j = i; j < i+classes; ++j) if (truth[j]) object = 1;
truth[i+classes] = !object;
}
} }
fclose(file);
} }
#define NUMCHARS 37 #define NUMCHARS 37
@ -218,20 +265,20 @@ void free_data(data d)
} }
} }
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter) data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background)
{ {
char **random_paths = get_random_paths(paths, n, m); char **random_paths = get_random_paths(paths, n, m);
int i; int i;
data d; data d;
d.shallow = 0; d.shallow = 0;
d.X = load_image_paths(random_paths, n, h, w); d.X = load_image_paths(random_paths, n, h, w);
int k = nh*nw*(4+classes); int k = nh*nw*(4+classes+background);
d.y = make_matrix(n, k); d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){ for(i = 0; i < n; ++i){
int dx = rand()%jitter; int dx = rand()%jitter;
int dy = rand()%jitter; int dy = rand()%jitter;
int flip = rand()%2; int flip = rand()%2;
fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip); fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip, background);
image a = float_to_image(h, w, 3, d.X.vals[i]); image a = float_to_image(h, w, 3, d.X.vals[i]);
if(flip) flip_image(a); if(flip) flip_image(a);
jitter_image(a,h-jitter,w-jitter,dy,dx); jitter_image(a,h-jitter,w-jitter,dy,dx);
@ -245,14 +292,14 @@ void *load_detection_thread(void *ptr)
{ {
printf("Loading data: %d\n", rand()); printf("Loading data: %d\n", rand());
struct load_args a = *(struct load_args*)ptr; struct load_args a = *(struct load_args*)ptr;
*a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter); *a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter, a.background);
translate_data_rows(*a.d, -128); translate_data_rows(*a.d, -128);
scale_data_rows(*a.d, 1./128); scale_data_rows(*a.d, 1./128);
free(ptr); free(ptr);
return 0; return 0;
} }
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d) pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d)
{ {
pthread_t thread; pthread_t thread;
struct load_args *args = calloc(1, sizeof(struct load_args)); struct load_args *args = calloc(1, sizeof(struct load_args));
@ -265,6 +312,7 @@ pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, in
args->nw = nw; args->nw = nw;
args->classes = classes; args->classes = classes;
args->jitter = jitter; args->jitter = jitter;
args->background = background;
args->d = d; args->d = d;
if(pthread_create(&thread, 0, load_detection_thread, args)) { if(pthread_create(&thread, 0, load_detection_thread, args)) {
error("Thread creation failed"); error("Thread creation failed");

View File

@ -20,8 +20,8 @@ data load_data_captcha_encode(char **paths, int n, int m, int h, int w);
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w); data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d); pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, data *d); pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d);
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter); data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background);
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w); data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
data load_cifar10_data(char *filename); data load_cifar10_data(char *filename);

View File

@ -9,7 +9,7 @@ extern "C" {
#include "cuda.h" #include "cuda.h"
} }
extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in) extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
{ {
int i; int i;
int out_h = deconvolutional_out_height(layer); int out_h = deconvolutional_out_height(layer);
@ -24,7 +24,7 @@ extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, f
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
float *a = layer.filters_gpu; float *a = layer.filters_gpu;
float *b = in + i*layer.c*layer.h*layer.w; float *b = state.input + i*layer.c*layer.h*layer.w;
float *c = layer.col_image_gpu; float *c = layer.col_image_gpu;
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n); gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
@ -34,7 +34,7 @@ extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, f
activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation); activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation);
} }
extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float *in, float *delta_gpu) extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state)
{ {
float alpha = 1./layer.batch; float alpha = 1./layer.batch;
int out_h = deconvolutional_out_height(layer); int out_h = deconvolutional_out_height(layer);
@ -45,14 +45,14 @@ extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer,
gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu); gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu);
backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size); backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size);
if(delta_gpu) memset(delta_gpu, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
int m = layer.c; int m = layer.c;
int n = layer.size*layer.size*layer.n; int n = layer.size*layer.size*layer.n;
int k = layer.h*layer.w; int k = layer.h*layer.w;
float *a = in + i*m*n; float *a = state.input + i*m*n;
float *b = layer.col_image_gpu; float *b = layer.col_image_gpu;
float *c = layer.filter_updates_gpu; float *c = layer.filter_updates_gpu;
@ -60,14 +60,14 @@ extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer,
layer.size, layer.stride, 0, b); layer.size, layer.stride, 0, b);
gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n); gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
if(delta_gpu){ if(state.delta){
int m = layer.c; int m = layer.c;
int n = layer.h*layer.w; int n = layer.h*layer.w;
int k = layer.size*layer.size*layer.n; int k = layer.size*layer.size*layer.n;
float *a = layer.filters_gpu; float *a = layer.filters_gpu;
float *b = layer.col_image_gpu; float *b = layer.col_image_gpu;
float *c = delta_gpu + i*n*m; float *c = state.delta + i*n*m;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
} }
@ -90,15 +90,15 @@ extern "C" void push_deconvolutional_layer(deconvolutional_layer layer)
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
} }
extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer) extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
{ {
int size = layer.size*layer.size*layer.c*layer.n; int size = layer.size*layer.size*layer.c*layer.n;
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1); scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1); scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
} }

View File

@ -43,15 +43,11 @@ image get_deconvolutional_delta(deconvolutional_layer layer)
return float_to_image(h,w,c,layer.delta); return float_to_image(h,w,c,layer.delta);
} }
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay) deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{ {
int i; int i;
deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer)); deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer));
layer->learning_rate = learning_rate;
layer->momentum = momentum;
layer->decay = decay;
layer->h = h; layer->h = h;
layer->w = w; layer->w = w;
layer->c = c; layer->c = c;
@ -120,7 +116,7 @@ void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w)
#endif #endif
} }
void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in) void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state)
{ {
int i; int i;
int out_h = deconvolutional_out_height(layer); int out_h = deconvolutional_out_height(layer);
@ -135,7 +131,7 @@ void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in)
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
float *a = layer.filters; float *a = layer.filters;
float *b = in + i*layer.c*layer.h*layer.w; float *b = state.input + i*layer.c*layer.h*layer.w;
float *c = layer.col_image; float *c = layer.col_image;
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n); gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
@ -145,7 +141,7 @@ void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in)
activate_array(layer.output, layer.batch*layer.n*size, layer.activation); activate_array(layer.output, layer.batch*layer.n*size, layer.activation);
} }
void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta) void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state)
{ {
float alpha = 1./layer.batch; float alpha = 1./layer.batch;
int out_h = deconvolutional_out_height(layer); int out_h = deconvolutional_out_height(layer);
@ -156,14 +152,14 @@ void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, floa
gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta); gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta);
backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size); backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size);
if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
int m = layer.c; int m = layer.c;
int n = layer.size*layer.size*layer.n; int n = layer.size*layer.size*layer.n;
int k = layer.h*layer.w; int k = layer.h*layer.w;
float *a = in + i*m*n; float *a = state.input + i*m*n;
float *b = layer.col_image; float *b = layer.col_image;
float *c = layer.filter_updates; float *c = layer.filter_updates;
@ -171,29 +167,29 @@ void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, floa
layer.size, layer.stride, 0, b); layer.size, layer.stride, 0, b);
gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
if(delta){ if(state.delta){
int m = layer.c; int m = layer.c;
int n = layer.h*layer.w; int n = layer.h*layer.w;
int k = layer.size*layer.size*layer.n; int k = layer.size*layer.size*layer.n;
float *a = layer.filters; float *a = layer.filters;
float *b = layer.col_image; float *b = layer.col_image;
float *c = delta + i*n*m; float *c = state.delta + i*n*m;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
} }
} }
} }
void update_deconvolutional_layer(deconvolutional_layer layer) void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
{ {
int size = layer.size*layer.size*layer.c*layer.n; int size = layer.size*layer.size*layer.c*layer.n;
axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1); scal_cpu(layer.n, momentum, layer.bias_updates, 1);
axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1); axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1); axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
scal_cpu(size, layer.momentum, layer.filter_updates, 1); scal_cpu(size, momentum, layer.filter_updates, 1);
} }

View File

@ -2,14 +2,11 @@
#define DECONVOLUTIONAL_LAYER_H #define DECONVOLUTIONAL_LAYER_H
#include "cuda.h" #include "cuda.h"
#include "params.h"
#include "image.h" #include "image.h"
#include "activations.h" #include "activations.h"
typedef struct { typedef struct {
float learning_rate;
float momentum;
float decay;
int batch; int batch;
int h,w,c; int h,w,c;
int n; int n;
@ -41,18 +38,18 @@ typedef struct {
} deconvolutional_layer; } deconvolutional_layer;
#ifdef GPU #ifdef GPU
void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in); void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, float * in, float * delta_gpu); void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
void update_deconvolutional_layer_gpu(deconvolutional_layer layer); void update_deconvolutional_layer_gpu(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
void push_deconvolutional_layer(deconvolutional_layer layer); void push_deconvolutional_layer(deconvolutional_layer layer);
void pull_deconvolutional_layer(deconvolutional_layer layer); void pull_deconvolutional_layer(deconvolutional_layer layer);
#endif #endif
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation, float learning_rate, float momentum, float decay); deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w); void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w);
void forward_deconvolutional_layer(const deconvolutional_layer layer, float *in); void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state);
void update_deconvolutional_layer(deconvolutional_layer layer); void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
void backward_deconvolutional_layer(deconvolutional_layer layer, float *in, float *delta); void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state);
image get_deconvolutional_image(deconvolutional_layer layer); image get_deconvolutional_image(deconvolutional_layer layer);
image get_deconvolutional_delta(deconvolutional_layer layer); image get_deconvolutional_delta(deconvolutional_layer layer);

View File

@ -61,15 +61,16 @@ void train_detection(char *cfgfile, char *weightfile)
data train, buffer; data train, buffer;
int im_dim = 512; int im_dim = 512;
int jitter = 64; int jitter = 64;
int classes = 21; int classes = 20;
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer); int background = 1;
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
clock_t time; clock_t time;
while(1){ while(1){
i += 1; i += 1;
time=clock(); time=clock();
pthread_join(load_thread, 0); pthread_join(load_thread, 0);
train = buffer; train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer); load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
/* /*
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]); image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
@ -103,10 +104,12 @@ void validate_detection(char *cfgfile, char *weightfile)
srand(time(0)); srand(time(0));
list *plist = get_paths("/home/pjreddie/data/voc/val.txt"); list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
//list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
char **paths = (char **)list_to_array(plist); char **paths = (char **)list_to_array(plist);
int num_output = 1225;
int im_size = 448; int im_size = 448;
int classes = 21; int classes = 20;
int background = 0;
int num_output = 7*7*(4+classes+background);
int m = plist->size; int m = plist->size;
int i = 0; int i = 0;
@ -130,26 +133,18 @@ void validate_detection(char *cfgfile, char *weightfile)
matrix pred = network_predict_data(net, val); matrix pred = network_predict_data(net, val);
int j, k, class; int j, k, class;
for(j = 0; j < pred.rows; ++j){ for(j = 0; j < pred.rows; ++j){
for(k = 0; k < pred.cols; k += classes+4){ for(k = 0; k < pred.cols; k += classes+4+background){
for(class = 0; class < classes; ++class){
/* int index = (k)/(classes+4+background);
int z;
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
printf("\n");
*/
//if (pred.vals[j][k] > .001){
for(class = 0; class < classes-1; ++class){
int index = (k)/(classes+4);
int r = index/7; int r = index/7;
int c = index%7; int c = index%7;
float y = (r + pred.vals[j][k+0+classes])/7.; int ci = k+classes+background;
float x = (c + pred.vals[j][k+1+classes])/7.; float y = (r + pred.vals[j][ci + 0])/7.;
float h = pred.vals[j][k+2+classes]; float x = (c + pred.vals[j][ci + 1])/7.;
float w = pred.vals[j][k+3+classes]; float h = pred.vals[j][ci + 2];
float w = pred.vals[j][ci + 3];
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w); printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
} }
//}
} }
} }

View File

@ -39,28 +39,52 @@ detection_layer *make_detection_layer(int batch, int inputs, int classes, int co
return layer; return layer;
} }
void forward_detection_layer(const detection_layer layer, float *in, float *truth)
void forward_detection_layer(const detection_layer layer, network_state state)
{ {
int in_i = 0; int in_i = 0;
int out_i = 0; int out_i = 0;
int locations = get_detection_layer_locations(layer); int locations = get_detection_layer_locations(layer);
int i,j; int i,j;
for(i = 0; i < layer.batch*locations; ++i){ for(i = 0; i < layer.batch*locations; ++i){
int mask = (!truth || !truth[out_i + layer.classes - 1]); int mask = (!state.truth || state.truth[out_i + layer.classes + 2]);
float scale = 1; float scale = 1;
if(layer.rescore) scale = in[in_i++]; if(layer.rescore) scale = state.input[in_i++];
for(j = 0; j < layer.classes; ++j){ for(j = 0; j < layer.classes; ++j){
layer.output[out_i++] = scale*in[in_i++]; layer.output[out_i++] = scale*state.input[in_i++];
}
if(!layer.rescore){
softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
activate_array(state.input+in_i, layer.coords, LOGISTIC);
} }
softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
activate_array(in+in_i, layer.coords, LOGISTIC);
for(j = 0; j < layer.coords; ++j){ for(j = 0; j < layer.coords; ++j){
layer.output[out_i++] = mask*in[in_i++]; layer.output[out_i++] = mask*state.input[in_i++];
} }
} }
} }
void backward_detection_layer(const detection_layer layer, float *in, float *delta) void dark_zone(detection_layer layer, int index, network_state state)
{
int size = layer.classes+layer.rescore+layer.coords;
int location = (index%(7*7*size)) / size ;
int r = location / 7;
int c = location % 7;
int class = index%size;
if(layer.rescore) --class;
int dr, dc;
for(dr = -1; dr <= 1; ++dr){
for(dc = -1; dc <= 1; ++dc){
if(!(dr || dc)) continue;
if((r + dr) > 6 || (r + dr) < 0) continue;
if((c + dc) > 6 || (c + dc) < 0) continue;
int di = (dr*7 + dc) * size;
if(state.truth[index+di]) continue;
layer.delta[index + di] = 0;
}
}
}
void backward_detection_layer(const detection_layer layer, network_state state)
{ {
int locations = get_detection_layer_locations(layer); int locations = get_detection_layer_locations(layer);
int i,j; int i,j;
@ -69,49 +93,68 @@ void backward_detection_layer(const detection_layer layer, float *in, float *del
for(i = 0; i < layer.batch*locations; ++i){ for(i = 0; i < layer.batch*locations; ++i){
float scale = 1; float scale = 1;
float latent_delta = 0; float latent_delta = 0;
if(layer.rescore) scale = in[in_i++]; if(layer.rescore) scale = state.input[in_i++];
if(!layer.rescore){
for(j = 0; j < layer.classes-1; ++j){
if(state.truth[out_i + j]) dark_zone(layer, out_i+j, state);
}
}
for(j = 0; j < layer.classes; ++j){ for(j = 0; j < layer.classes; ++j){
latent_delta += in[in_i]*layer.delta[out_i]; latent_delta += state.input[in_i]*layer.delta[out_i];
delta[in_i++] = scale*layer.delta[out_i++]; state.delta[in_i++] = scale*layer.delta[out_i++];
} }
gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); if (!layer.rescore) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
for(j = 0; j < layer.coords; ++j){ for(j = 0; j < layer.coords; ++j){
delta[in_i++] = layer.delta[out_i++]; state.delta[in_i++] = layer.delta[out_i++];
} }
if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta; if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
} }
} }
#ifdef GPU #ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth) void forward_detection_layer_gpu(const detection_layer layer, network_state state)
{ {
int outputs = get_detection_layer_output_size(layer); int outputs = get_detection_layer_output_size(layer);
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
float *truth_cpu = 0; float *truth_cpu = 0;
if(truth){ if(state.truth){
truth_cpu = calloc(layer.batch*outputs, sizeof(float)); truth_cpu = calloc(layer.batch*outputs, sizeof(float));
cuda_pull_array(truth, truth_cpu, layer.batch*outputs); cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
} }
cuda_pull_array(in, in_cpu, layer.batch*layer.inputs); cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
forward_detection_layer(layer, in_cpu, truth_cpu); network_state cpu_state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
forward_detection_layer(layer, cpu_state);
cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
free(in_cpu); free(cpu_state.input);
if(truth_cpu) free(truth_cpu); if(cpu_state.truth) free(cpu_state.truth);
} }
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta) void backward_detection_layer_gpu(detection_layer layer, network_state state)
{ {
int outputs = get_detection_layer_output_size(layer); int outputs = get_detection_layer_output_size(layer);
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
float *truth_cpu = 0;
if(state.truth){
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
}
network_state cpu_state;
cpu_state.train = state.train;
cpu_state.input = in_cpu;
cpu_state.truth = truth_cpu;
cpu_state.delta = delta_cpu;
cuda_pull_array(in, in_cpu, layer.batch*layer.inputs); cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs); cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
backward_detection_layer(layer, in_cpu, delta_cpu); backward_detection_layer(layer, cpu_state);
cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs); cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
free(in_cpu); free(in_cpu);
free(delta_cpu); free(delta_cpu);

View File

@ -1,6 +1,8 @@
#ifndef DETECTION_LAYER_H #ifndef DETECTION_LAYER_H
#define DETECTION_LAYER_H #define DETECTION_LAYER_H
#include "params.h"
typedef struct { typedef struct {
int batch; int batch;
int inputs; int inputs;
@ -16,13 +18,13 @@ typedef struct {
} detection_layer; } detection_layer;
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore); detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore);
void forward_detection_layer(const detection_layer layer, float *in, float *truth); void forward_detection_layer(const detection_layer layer, network_state state);
void backward_detection_layer(const detection_layer layer, float *in, float *delta); void backward_detection_layer(const detection_layer layer, network_state state);
int get_detection_layer_output_size(detection_layer layer); int get_detection_layer_output_size(detection_layer layer);
#ifdef GPU #ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth); void forward_detection_layer_gpu(const detection_layer layer, network_state state);
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta); void backward_detection_layer_gpu(detection_layer layer, network_state state);
#endif #endif
#endif #endif

View File

@ -1,4 +1,5 @@
#include "dropout_layer.h" #include "dropout_layer.h"
#include "params.h"
#include "utils.h" #include "utils.h"
#include "cuda.h" #include "cuda.h"
#include <stdlib.h> #include <stdlib.h>
@ -11,11 +12,9 @@ dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
layer->probability = probability; layer->probability = probability;
layer->inputs = inputs; layer->inputs = inputs;
layer->batch = batch; layer->batch = batch;
layer->output = calloc(inputs*batch, sizeof(float));
layer->rand = calloc(inputs*batch, sizeof(float)); layer->rand = calloc(inputs*batch, sizeof(float));
layer->scale = 1./(1.-probability); layer->scale = 1./(1.-probability);
#ifdef GPU #ifdef GPU
layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
layer->rand_gpu = cuda_make_array(layer->rand, inputs*batch); layer->rand_gpu = cuda_make_array(layer->rand, inputs*batch);
#endif #endif
return layer; return layer;
@ -23,36 +22,34 @@ dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
void resize_dropout_layer(dropout_layer *layer, int inputs) void resize_dropout_layer(dropout_layer *layer, int inputs)
{ {
layer->output = realloc(layer->output, layer->inputs*layer->batch*sizeof(float));
layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float)); layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float));
#ifdef GPU #ifdef GPU
cuda_free(layer->output_gpu);
cuda_free(layer->rand_gpu); cuda_free(layer->rand_gpu);
layer->output_gpu = cuda_make_array(layer->output, inputs*layer->batch);
layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch); layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch);
#endif #endif
} }
void forward_dropout_layer(dropout_layer layer, float *input) void forward_dropout_layer(dropout_layer layer, network_state state)
{ {
int i; int i;
if (!state.train) return;
for(i = 0; i < layer.batch * layer.inputs; ++i){ for(i = 0; i < layer.batch * layer.inputs; ++i){
float r = rand_uniform(); float r = rand_uniform();
layer.rand[i] = r; layer.rand[i] = r;
if(r < layer.probability) layer.output[i] = 0; if(r < layer.probability) state.input[i] = 0;
else layer.output[i] = input[i]*layer.scale; else state.input[i] *= layer.scale;
} }
} }
void backward_dropout_layer(dropout_layer layer, float *delta) void backward_dropout_layer(dropout_layer layer, network_state state)
{ {
int i; int i;
if(!delta) return; if(!state.delta) return;
for(i = 0; i < layer.batch * layer.inputs; ++i){ for(i = 0; i < layer.batch * layer.inputs; ++i){
float r = layer.rand[i]; float r = layer.rand[i];
if(r < layer.probability) delta[i] = 0; if(r < layer.probability) state.delta[i] = 0;
else delta[i] *= layer.scale; else state.delta[i] *= layer.scale;
} }
} }

View File

@ -1,5 +1,6 @@
#ifndef DROPOUT_LAYER_H #ifndef DROPOUT_LAYER_H
#define DROPOUT_LAYER_H #define DROPOUT_LAYER_H
#include "params.h"
typedef struct{ typedef struct{
int batch; int batch;
@ -7,22 +8,20 @@ typedef struct{
float probability; float probability;
float scale; float scale;
float *rand; float *rand;
float *output;
#ifdef GPU #ifdef GPU
float * rand_gpu; float * rand_gpu;
float * output_gpu;
#endif #endif
} dropout_layer; } dropout_layer;
dropout_layer *make_dropout_layer(int batch, int inputs, float probability); dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
void forward_dropout_layer(dropout_layer layer, float *input); void forward_dropout_layer(dropout_layer layer, network_state state);
void backward_dropout_layer(dropout_layer layer, float *delta); void backward_dropout_layer(dropout_layer layer, network_state state);
void resize_dropout_layer(dropout_layer *layer, int inputs); void resize_dropout_layer(dropout_layer *layer, int inputs);
#ifdef GPU #ifdef GPU
void forward_dropout_layer_gpu(dropout_layer layer, float * input); void forward_dropout_layer_gpu(dropout_layer layer, network_state state);
void backward_dropout_layer_gpu(dropout_layer layer, float * delta); void backward_dropout_layer_gpu(dropout_layer layer, network_state state);
#endif #endif
#endif #endif

View File

@ -2,32 +2,32 @@ extern "C" {
#include "dropout_layer.h" #include "dropout_layer.h"
#include "cuda.h" #include "cuda.h"
#include "utils.h" #include "utils.h"
#include "params.h"
} }
__global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale, float *output) __global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale)
{ {
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id < size) output[id] = (rand[id] < prob) ? 0 : input[id]*scale; if(id < size) input[id] = (rand[id] < prob) ? 0 : input[id]*scale;
} }
extern "C" void forward_dropout_layer_gpu(dropout_layer layer, float * input) extern "C" void forward_dropout_layer_gpu(dropout_layer layer, network_state state)
{ {
if (!state.train) return;
int j; int j;
int size = layer.inputs*layer.batch; int size = layer.inputs*layer.batch;
for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform(); for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform();
cuda_push_array(layer.rand_gpu, layer.rand, layer.inputs*layer.batch); cuda_push_array(layer.rand_gpu, layer.rand, layer.inputs*layer.batch);
yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.rand_gpu, layer.probability, yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.rand_gpu, layer.probability, layer.scale);
layer.scale, layer.output_gpu);
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }
extern "C" void backward_dropout_layer_gpu(dropout_layer layer, float *delta) extern "C" void backward_dropout_layer_gpu(dropout_layer layer, network_state state)
{ {
if(!delta) return; if(!state.delta) return;
int size = layer.inputs*layer.batch; int size = layer.inputs*layer.batch;
yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(delta, size, layer.rand_gpu, layer.probability, yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(state.delta, size, layer.rand_gpu, layer.probability, layer.scale);
layer.scale, delta);
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }

View File

@ -1,25 +0,0 @@
#include "freeweight_layer.h"
#include "stdlib.h"
#include "stdio.h"
freeweight_layer *make_freeweight_layer(int batch, int inputs)
{
fprintf(stderr, "Freeweight Layer: %d inputs\n", inputs);
freeweight_layer *layer = calloc(1, sizeof(freeweight_layer));
layer->inputs = inputs;
layer->batch = batch;
return layer;
}
void forward_freeweight_layer(freeweight_layer layer, float *input)
{
int i;
for(i = 0; i < layer.batch * layer.inputs; ++i){
input[i] *= 2.*((float)rand()/RAND_MAX);
}
}
void backward_freeweight_layer(freeweight_layer layer, float *input, float *delta)
{
// Don't do shit LULZ
}

View File

@ -1,14 +0,0 @@
#ifndef FREEWEIGHT_LAYER_H
#define FREEWEIGHT_LAYER_H
typedef struct{
int batch;
int inputs;
} freeweight_layer;
freeweight_layer *make_freeweight_layer(int batch, int inputs);
void forward_freeweight_layer(freeweight_layer layer, float *input);
void backward_freeweight_layer(freeweight_layer layer, float *input, float *delta);
#endif

View File

@ -58,7 +58,7 @@ void resize_maxpool_layer(maxpool_layer *layer, int h, int w)
#endif #endif
} }
void forward_maxpool_layer(const maxpool_layer layer, float *input) void forward_maxpool_layer(const maxpool_layer layer, network_state state)
{ {
int b,i,j,k,l,m; int b,i,j,k,l,m;
int w_offset = (-layer.size-1)/2 + 1; int w_offset = (-layer.size-1)/2 + 1;
@ -82,7 +82,7 @@ void forward_maxpool_layer(const maxpool_layer layer, float *input)
int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c)); int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
int valid = (cur_h >= 0 && cur_h < layer.h && int valid = (cur_h >= 0 && cur_h < layer.h &&
cur_w >= 0 && cur_w < layer.w); cur_w >= 0 && cur_w < layer.w);
float val = (valid != 0) ? input[index] : -FLT_MAX; float val = (valid != 0) ? state.input[index] : -FLT_MAX;
max_i = (val > max) ? index : max_i; max_i = (val > max) ? index : max_i;
max = (val > max) ? val : max; max = (val > max) ? val : max;
} }
@ -95,16 +95,16 @@ void forward_maxpool_layer(const maxpool_layer layer, float *input)
} }
} }
void backward_maxpool_layer(const maxpool_layer layer, float *delta) void backward_maxpool_layer(const maxpool_layer layer, network_state state)
{ {
int i; int i;
int h = (layer.h-1)/layer.stride + 1; int h = (layer.h-1)/layer.stride + 1;
int w = (layer.w-1)/layer.stride + 1; int w = (layer.w-1)/layer.stride + 1;
int c = layer.c; int c = layer.c;
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
for(i = 0; i < h*w*c*layer.batch; ++i){ for(i = 0; i < h*w*c*layer.batch; ++i){
int index = layer.indexes[i]; int index = layer.indexes[i];
delta[index] += layer.delta[i]; state.delta[index] += layer.delta[i];
} }
} }

View File

@ -2,6 +2,7 @@
#define MAXPOOL_LAYER_H #define MAXPOOL_LAYER_H
#include "image.h" #include "image.h"
#include "params.h"
#include "cuda.h" #include "cuda.h"
typedef struct { typedef struct {
@ -22,12 +23,12 @@ typedef struct {
image get_maxpool_image(maxpool_layer layer); image get_maxpool_image(maxpool_layer layer);
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride); maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
void resize_maxpool_layer(maxpool_layer *layer, int h, int w); void resize_maxpool_layer(maxpool_layer *layer, int h, int w);
void forward_maxpool_layer(const maxpool_layer layer, float *input); void forward_maxpool_layer(const maxpool_layer layer, network_state state);
void backward_maxpool_layer(const maxpool_layer layer, float *delta); void backward_maxpool_layer(const maxpool_layer layer, network_state state);
#ifdef GPU #ifdef GPU
void forward_maxpool_layer_gpu(maxpool_layer layer, float * input); void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta); void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
#endif #endif
#endif #endif

View File

@ -80,7 +80,7 @@ __global__ void backward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_
prev_delta[index] = d; prev_delta[index] = d;
} }
extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, float *input) extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
{ {
int h = (layer.h-1)/layer.stride + 1; int h = (layer.h-1)/layer.stride + 1;
int w = (layer.w-1)/layer.stride + 1; int w = (layer.w-1)/layer.stride + 1;
@ -88,15 +88,15 @@ extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, float *input)
size_t n = h*w*c*layer.batch; size_t n = h*w*c*layer.batch;
forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, input, layer.output_gpu, layer.indexes_gpu); forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, state.input, layer.output_gpu, layer.indexes_gpu);
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }
extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta) extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state)
{ {
size_t n = layer.h*layer.w*layer.c*layer.batch; size_t n = layer.h*layer.w*layer.c*layer.batch;
backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, delta, layer.indexes_gpu); backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, state.delta, layer.indexes_gpu);
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
} }

View File

@ -4,6 +4,7 @@
#include "image.h" #include "image.h"
#include "data.h" #include "data.h"
#include "utils.h" #include "utils.h"
#include "params.h"
#include "crop_layer.h" #include "crop_layer.h"
#include "connected_layer.h" #include "connected_layer.h"
@ -13,7 +14,6 @@
#include "maxpool_layer.h" #include "maxpool_layer.h"
#include "cost_layer.h" #include "cost_layer.h"
#include "normalization_layer.h" #include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h" #include "softmax_layer.h"
#include "dropout_layer.h" #include "dropout_layer.h"
@ -36,8 +36,6 @@ char *get_layer_string(LAYER_TYPE a)
return "normalization"; return "normalization";
case DROPOUT: case DROPOUT:
return "dropout"; return "dropout";
case FREEWEIGHT:
return "freeweight";
case CROP: case CROP:
return "crop"; return "crop";
case COST: case COST:
@ -48,16 +46,18 @@ char *get_layer_string(LAYER_TYPE a)
return "none"; return "none";
} }
network make_network(int n, int batch) network make_network(int n)
{ {
network net; network net;
net.n = n; net.n = n;
net.batch = batch;
net.layers = calloc(net.n, sizeof(void *)); net.layers = calloc(net.n, sizeof(void *));
net.types = calloc(net.n, sizeof(LAYER_TYPE)); net.types = calloc(net.n, sizeof(LAYER_TYPE));
net.outputs = 0; net.outputs = 0;
net.output = 0; net.output = 0;
net.seen = 0; net.seen = 0;
net.batch = 0;
net.inputs = 0;
net.h = net.w = net.c = 0;
#ifdef GPU #ifdef GPU
net.input_gpu = calloc(1, sizeof(float *)); net.input_gpu = calloc(1, sizeof(float *));
net.truth_gpu = calloc(1, sizeof(float *)); net.truth_gpu = calloc(1, sizeof(float *));
@ -65,68 +65,41 @@ network make_network(int n, int batch)
return net; return net;
} }
void forward_network(network net, float *input, float *truth, int train) void forward_network(network net, network_state state)
{ {
int i; int i;
for(i = 0; i < net.n; ++i){ for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
forward_convolutional_layer(layer, input);
input = layer.output;
} }
else if(net.types[i] == DECONVOLUTIONAL){ else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
forward_deconvolutional_layer(layer, input);
input = layer.output;
} }
else if(net.types[i] == DETECTION){ else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i]; forward_detection_layer(*(detection_layer *)net.layers[i], state);
forward_detection_layer(layer, input, truth);
input = layer.output;
} }
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; forward_connected_layer(*(connected_layer *)net.layers[i], state);
forward_connected_layer(layer, input);
input = layer.output;
} }
else if(net.types[i] == CROP){ else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i]; forward_crop_layer(*(crop_layer *)net.layers[i], state);
forward_crop_layer(layer, train, input);
input = layer.output;
} }
else if(net.types[i] == COST){ else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i]; forward_cost_layer(*(cost_layer *)net.layers[i], state);
forward_cost_layer(layer, input, truth);
} }
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
forward_softmax_layer(layer, input);
input = layer.output;
} }
else if(net.types[i] == MAXPOOL){ else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
forward_maxpool_layer(layer, input);
input = layer.output;
} }
else if(net.types[i] == NORMALIZATION){ else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i]; forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
forward_normalization_layer(layer, input);
input = layer.output;
} }
else if(net.types[i] == DROPOUT){ else if(net.types[i] == DROPOUT){
if(!train) continue; forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer(layer, input);
input = layer.output;
} }
else if(net.types[i] == FREEWEIGHT){ state.input = get_network_output_layer(net, i);
if(!train) continue;
//freeweight_layer layer = *(freeweight_layer *)net.layers[i];
//forward_freeweight_layer(layer, input);
}
//char buff[256];
//sprintf(buff, "layer %d", i);
//cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
} }
} }
@ -136,15 +109,15 @@ void update_network(network net)
for(i = 0; i < net.n; ++i){ for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer(layer); update_convolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
} }
else if(net.types[i] == DECONVOLUTIONAL){ else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
update_deconvolutional_layer(layer); update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
} }
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer(layer); update_connected_layer(layer, net.learning_rate, net.momentum, net.decay);
} }
} }
} }
@ -152,37 +125,27 @@ void update_network(network net)
float *get_network_output_layer(network net, int i) float *get_network_output_layer(network net, int i)
{ {
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return ((convolutional_layer *)net.layers[i]) -> output;
return layer.output;
} else if(net.types[i] == DECONVOLUTIONAL){ } else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; return ((deconvolutional_layer *)net.layers[i]) -> output;
return layer.output;
} else if(net.types[i] == MAXPOOL){ } else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return ((maxpool_layer *)net.layers[i]) -> output;
return layer.output;
} else if(net.types[i] == DETECTION){ } else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i]; return ((detection_layer *)net.layers[i]) -> output;
return layer.output;
} else if(net.types[i] == SOFTMAX){ } else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; return ((softmax_layer *)net.layers[i]) -> output;
return layer.output;
} else if(net.types[i] == DROPOUT){ } else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == FREEWEIGHT){
return get_network_output_layer(net, i-1); return get_network_output_layer(net, i-1);
} else if(net.types[i] == CONNECTED){ } else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; return ((connected_layer *)net.layers[i]) -> output;
return layer.output;
} else if(net.types[i] == CROP){ } else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i]; return ((crop_layer *)net.layers[i]) -> output;
return layer.output;
} else if(net.types[i] == NORMALIZATION){ } else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i]; return ((normalization_layer *)net.layers[i]) -> output;
return layer.output;
} }
return 0; return 0;
} }
float *get_network_output(network net) float *get_network_output(network net)
{ {
int i; int i;
@ -210,8 +173,6 @@ float *get_network_delta_layer(network net, int i)
} else if(net.types[i] == DROPOUT){ } else if(net.types[i] == DROPOUT){
if(i == 0) return 0; if(i == 0) return 0;
return get_network_delta_layer(net, i-1); return get_network_delta_layer(net, i-1);
} else if(net.types[i] == FREEWEIGHT){
return get_network_delta_layer(net, i-1);
} else if(net.types[i] == CONNECTED){ } else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta; return layer.delta;
@ -257,54 +218,53 @@ int get_predicted_class_network(network net)
return max_index(out, k); return max_index(out, k);
} }
void backward_network(network net, float *input, float *truth) void backward_network(network net, network_state state)
{ {
int i; int i;
float *prev_input; float *original_input = state.input;
float *prev_delta;
for(i = net.n-1; i >= 0; --i){ for(i = net.n-1; i >= 0; --i){
if(i == 0){ if(i == 0){
prev_input = input; state.input = original_input;
prev_delta = 0; state.delta = 0;
}else{ }else{
prev_input = get_network_output_layer(net, i-1); state.input = get_network_output_layer(net, i-1);
prev_delta = get_network_delta_layer(net, i-1); state.delta = get_network_delta_layer(net, i-1);
} }
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; convolutional_layer layer = *(convolutional_layer *)net.layers[i];
backward_convolutional_layer(layer, prev_input, prev_delta); backward_convolutional_layer(layer, state);
} else if(net.types[i] == DECONVOLUTIONAL){ } else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
backward_deconvolutional_layer(layer, prev_input, prev_delta); backward_deconvolutional_layer(layer, state);
} }
else if(net.types[i] == MAXPOOL){ else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; maxpool_layer layer = *(maxpool_layer *)net.layers[i];
if(i != 0) backward_maxpool_layer(layer, prev_delta); if(i != 0) backward_maxpool_layer(layer, state);
} }
else if(net.types[i] == DROPOUT){ else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i]; dropout_layer layer = *(dropout_layer *)net.layers[i];
backward_dropout_layer(layer, prev_delta); backward_dropout_layer(layer, state);
} }
else if(net.types[i] == DETECTION){ else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i]; detection_layer layer = *(detection_layer *)net.layers[i];
backward_detection_layer(layer, prev_input, prev_delta); backward_detection_layer(layer, state);
} }
else if(net.types[i] == NORMALIZATION){ else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i]; normalization_layer layer = *(normalization_layer *)net.layers[i];
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); if(i != 0) backward_normalization_layer(layer, state);
} }
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; softmax_layer layer = *(softmax_layer *)net.layers[i];
if(i != 0) backward_softmax_layer(layer, prev_delta); if(i != 0) backward_softmax_layer(layer, state);
} }
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer(layer, prev_input, prev_delta); backward_connected_layer(layer, state);
} }
else if(net.types[i] == COST){ else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i]; cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer(layer, prev_input, prev_delta); backward_cost_layer(layer, state);
} }
} }
} }
@ -314,8 +274,12 @@ float train_network_datum(network net, float *x, float *y)
#ifdef GPU #ifdef GPU
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif #endif
forward_network(net, x, y, 1); network_state state;
backward_network(net, x, y); state.input = x;
state.truth = y;
state.train = 1;
forward_network(net, state);
backward_network(net, state);
float error = get_network_cost(net); float error = get_network_cost(net);
update_network(net); update_network(net);
return error; return error;
@ -361,15 +325,17 @@ float train_network(network net, data d)
float train_network_batch(network net, data d, int n) float train_network_batch(network net, data d, int n)
{ {
int i,j; int i,j;
network_state state;
state.train = 1;
float sum = 0; float sum = 0;
int batch = 2; int batch = 2;
for(i = 0; i < n; ++i){ for(i = 0; i < n; ++i){
for(j = 0; j < batch; ++j){ for(j = 0; j < batch; ++j){
int index = rand()%d.X.rows; int index = rand()%d.X.rows;
float *x = d.X.vals[index]; state.input = d.X.vals[index];
float *y = d.y.vals[index]; state.truth = d.y.vals[index];
forward_network(net, x, y, 1); forward_network(net, state);
backward_network(net, x, y); backward_network(net, state);
sum += get_network_cost(net); sum += get_network_cost(net);
} }
update_network(net); update_network(net);
@ -377,28 +343,6 @@ float train_network_batch(network net, data d, int n)
return (float)sum/(n*batch); return (float)sum/(n*batch);
} }
void set_learning_network(network *net, float rate, float momentum, float decay)
{
int i;
net->learning_rate=rate;
net->momentum = momentum;
net->decay = decay;
for(i = 0; i < net->n; ++i){
if(net->types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
layer->learning_rate=rate;
layer->momentum = momentum;
layer->decay = decay;
}
else if(net->types[i] == CONNECTED){
connected_layer *layer = (connected_layer *)net->layers[i];
layer->learning_rate=rate;
layer->momentum = momentum;
layer->decay = decay;
}
}
}
void set_batch_network(network *net, int b) void set_batch_network(network *net, int b)
{ {
net->batch = b; net->batch = b;
@ -425,10 +369,6 @@ void set_batch_network(network *net, int b)
detection_layer *layer = (detection_layer *) net->layers[i]; detection_layer *layer = (detection_layer *) net->layers[i];
layer->batch = b; layer->batch = b;
} }
else if(net->types[i] == FREEWEIGHT){
freeweight_layer *layer = (freeweight_layer *) net->layers[i];
layer->batch = b;
}
else if(net->types[i] == SOFTMAX){ else if(net->types[i] == SOFTMAX){
softmax_layer *layer = (softmax_layer *)net->layers[i]; softmax_layer *layer = (softmax_layer *)net->layers[i];
layer->batch = b; layer->batch = b;
@ -472,15 +412,11 @@ int get_network_input_size_layer(network net, int i)
crop_layer layer = *(crop_layer *) net.layers[i]; crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.h*layer.w; return layer.c*layer.h*layer.w;
} }
else if(net.types[i] == FREEWEIGHT){
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
return layer.inputs;
}
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs; return layer.inputs;
} }
printf("Can't find input size\n"); fprintf(stderr, "Can't find input size\n");
return 0; return 0;
} }
@ -505,7 +441,7 @@ int get_network_output_size_layer(network net, int i)
image output = get_maxpool_image(layer); image output = get_maxpool_image(layer);
return output.h*output.w*output.c; return output.h*output.w*output.c;
} }
else if(net.types[i] == CROP){ else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *) net.layers[i]; crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.crop_height*layer.crop_width; return layer.c*layer.crop_height*layer.crop_width;
} }
@ -517,15 +453,11 @@ int get_network_output_size_layer(network net, int i)
dropout_layer layer = *(dropout_layer *) net.layers[i]; dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs; return layer.inputs;
} }
else if(net.types[i] == FREEWEIGHT){
freeweight_layer layer = *(freeweight_layer *) net.layers[i];
return layer.inputs;
}
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs; return layer.inputs;
} }
printf("Can't find output size\n"); fprintf(stderr, "Can't find output size\n");
return 0; return 0;
} }
@ -650,11 +582,16 @@ void top_predictions(network net, int k, int *index)
float *network_predict(network net, float *input) float *network_predict(network net, float *input)
{ {
#ifdef GPU #ifdef GPU
if(gpu_index >= 0) return network_predict_gpu(net, input); if(gpu_index >= 0) return network_predict_gpu(net, input);
#endif #endif
forward_network(net, input, 0, 0); network_state state;
state.input = input;
state.truth = 0;
state.train = 0;
state.delta = 0;
forward_network(net, state);
float *out = get_network_output(net); float *out = get_network_output(net);
return out; return out;
} }

View File

@ -3,6 +3,7 @@
#define NETWORK_H #define NETWORK_H
#include "image.h" #include "image.h"
#include "params.h"
#include "data.h" #include "data.h"
typedef enum { typedef enum {
@ -14,7 +15,6 @@ typedef enum {
DETECTION, DETECTION,
NORMALIZATION, NORMALIZATION,
DROPOUT, DROPOUT,
FREEWEIGHT,
CROP, CROP,
COST COST
} LAYER_TYPE; } LAYER_TYPE;
@ -31,6 +31,9 @@ typedef struct {
int outputs; int outputs;
float *output; float *output;
int inputs;
int h, w, c;
#ifdef GPU #ifdef GPU
float **input_gpu; float **input_gpu;
float **truth_gpu; float **truth_gpu;
@ -47,9 +50,9 @@ float * get_network_delta_gpu_layer(network net, int i);
void compare_networks(network n1, network n2, data d); void compare_networks(network n1, network n2, data d);
char *get_layer_string(LAYER_TYPE a); char *get_layer_string(LAYER_TYPE a);
network make_network(int n, int batch); network make_network(int n);
void forward_network(network net, float *input, float *truth, int train); void forward_network(network net, network_state state);
void backward_network(network net, float *input, float *truth); void backward_network(network net, network_state state);
void update_network(network net); void update_network(network net);
float train_network(network net, data d); float train_network(network net, data d);
@ -75,7 +78,6 @@ void print_network(network net);
void visualize_network(network net); void visualize_network(network net);
int resize_network(network net, int h, int w, int c); int resize_network(network net, int h, int w, int c);
void set_batch_network(network *net, int b); void set_batch_network(network *net, int b);
void set_learning_network(network *net, float rate, float momentum, float decay);
int get_network_input_size(network net); int get_network_input_size(network net);
float get_network_cost(network net); float get_network_cost(network net);

View File

@ -6,6 +6,7 @@ extern "C" {
#include "image.h" #include "image.h"
#include "data.h" #include "data.h"
#include "utils.h" #include "utils.h"
#include "params.h"
#include "crop_layer.h" #include "crop_layer.h"
#include "connected_layer.h" #include "connected_layer.h"
@ -15,7 +16,6 @@ extern "C" {
#include "maxpool_layer.h" #include "maxpool_layer.h"
#include "cost_layer.h" #include "cost_layer.h"
#include "normalization_layer.h" #include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h" #include "softmax_layer.h"
#include "dropout_layer.h" #include "dropout_layer.h"
} }
@ -24,108 +24,78 @@ extern "C" float * get_network_output_gpu_layer(network net, int i);
extern "C" float * get_network_delta_gpu_layer(network net, int i); extern "C" float * get_network_delta_gpu_layer(network net, int i);
float *get_network_output_gpu(network net); float *get_network_output_gpu(network net);
void forward_network_gpu(network net, float * input, float * truth, int train) void forward_network_gpu(network net, network_state state)
{ {
int i; int i;
for(i = 0; i < net.n; ++i){ for(i = 0; i < net.n; ++i){
//clock_t time = clock();
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
forward_convolutional_layer_gpu(layer, input);
input = layer.output_gpu;
} }
else if(net.types[i] == DECONVOLUTIONAL){ else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
forward_deconvolutional_layer_gpu(layer, input);
input = layer.output_gpu;
} }
else if(net.types[i] == COST){ else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i]; forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
forward_cost_layer_gpu(layer, input, truth);
} }
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
forward_connected_layer_gpu(layer, input);
input = layer.output_gpu;
} }
else if(net.types[i] == DETECTION){ else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i]; forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
forward_detection_layer_gpu(layer, input, truth);
input = layer.output_gpu;
} }
else if(net.types[i] == MAXPOOL){ else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
forward_maxpool_layer_gpu(layer, input);
input = layer.output_gpu;
} }
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
forward_softmax_layer_gpu(layer, input);
input = layer.output_gpu;
} }
else if(net.types[i] == DROPOUT){ else if(net.types[i] == DROPOUT){
if(!train) continue; forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer_gpu(layer, input);
input = layer.output_gpu;
} }
else if(net.types[i] == CROP){ else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i]; forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
forward_crop_layer_gpu(layer, train, input);
input = layer.output_gpu;
} }
//cudaDeviceSynchronize(); state.input = get_network_output_gpu_layer(net, i);
//printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
} }
} }
void backward_network_gpu(network net, float * input, float *truth) void backward_network_gpu(network net, network_state state)
{ {
int i; int i;
float * prev_input; float * original_input = state.input;
float * prev_delta;
for(i = net.n-1; i >= 0; --i){ for(i = net.n-1; i >= 0; --i){
//clock_t time = clock(); //clock_t time = clock();
if(i == 0){ if(i == 0){
prev_input = input; state.input = original_input;
prev_delta = 0; state.delta = 0;
}else{ }else{
prev_input = get_network_output_gpu_layer(net, i-1); state.input = get_network_output_gpu_layer(net, i-1);
prev_delta = get_network_delta_gpu_layer(net, i-1); state.delta = get_network_delta_gpu_layer(net, i-1);
} }
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
} }
else if(net.types[i] == DECONVOLUTIONAL){ else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
backward_deconvolutional_layer_gpu(layer, prev_input, prev_delta);
} }
else if(net.types[i] == COST){ else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i]; backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
backward_cost_layer_gpu(layer, prev_input, prev_delta);
} }
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
backward_connected_layer_gpu(layer, prev_input, prev_delta);
} }
else if(net.types[i] == DETECTION){ else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i]; backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
backward_detection_layer_gpu(layer, prev_input, prev_delta);
} }
else if(net.types[i] == MAXPOOL){ else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
backward_maxpool_layer_gpu(layer, prev_delta);
} }
else if(net.types[i] == DROPOUT){ else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i]; backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
backward_dropout_layer_gpu(layer, prev_delta);
} }
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
backward_softmax_layer_gpu(layer, prev_delta);
} }
//printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
} }
} }
@ -135,15 +105,15 @@ void update_network_gpu(network net)
for(i = 0; i < net.n; ++i){ for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer_gpu(layer); update_convolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
} }
else if(net.types[i] == DECONVOLUTIONAL){ else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
update_deconvolutional_layer_gpu(layer); update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
} }
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer_gpu(layer); update_connected_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
} }
} }
} }
@ -151,35 +121,28 @@ void update_network_gpu(network net)
float * get_network_output_gpu_layer(network net, int i) float * get_network_output_gpu_layer(network net, int i)
{ {
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return ((convolutional_layer *)net.layers[i]) -> output_gpu;
return layer.output_gpu;
} }
else if(net.types[i] == DECONVOLUTIONAL){ else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
return layer.output_gpu;
} }
else if(net.types[i] == DETECTION){ else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i]; return ((detection_layer *)net.layers[i]) -> output_gpu;
return layer.output_gpu;
} }
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; return ((connected_layer *)net.layers[i]) -> output_gpu;
return layer.output_gpu;
} }
else if(net.types[i] == MAXPOOL){ else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return ((maxpool_layer *)net.layers[i]) -> output_gpu;
return layer.output_gpu;
} }
else if(net.types[i] == CROP){ else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i]; return ((crop_layer *)net.layers[i]) -> output_gpu;
return layer.output_gpu;
} }
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; return ((softmax_layer *)net.layers[i]) -> output_gpu;
return layer.output_gpu; }
} else if(net.types[i] == DROPOUT){ else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *)net.layers[i]; return get_network_output_gpu_layer(net, i-1);
return layer.output_gpu;
} }
return 0; return 0;
} }
@ -219,6 +182,7 @@ float * get_network_delta_gpu_layer(network net, int i)
float train_network_datum_gpu(network net, float *x, float *y) float train_network_datum_gpu(network net, float *x, float *y)
{ {
//clock_t time = clock(); //clock_t time = clock();
network_state state;
int x_size = get_network_input_size(net)*net.batch; int x_size = get_network_input_size(net)*net.batch;
int y_size = get_network_output_size(net)*net.batch; int y_size = get_network_output_size(net)*net.batch;
if(!*net.input_gpu){ if(!*net.input_gpu){
@ -228,12 +192,15 @@ float train_network_datum_gpu(network net, float *x, float *y)
cuda_push_array(*net.input_gpu, x, x_size); cuda_push_array(*net.input_gpu, x, x_size);
cuda_push_array(*net.truth_gpu, y, y_size); cuda_push_array(*net.truth_gpu, y, y_size);
} }
state.input = *net.input_gpu;
state.truth = *net.truth_gpu;
state.train = 1;
//printf("trans %f\n", sec(clock() - time)); //printf("trans %f\n", sec(clock() - time));
//time = clock(); //time = clock();
forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1); forward_network_gpu(net, state);
//printf("forw %f\n", sec(clock() - time)); //printf("forw %f\n", sec(clock() - time));
//time = clock(); //time = clock();
backward_network_gpu(net, *net.input_gpu, *net.truth_gpu); backward_network_gpu(net, state);
//printf("back %f\n", sec(clock() - time)); //printf("back %f\n", sec(clock() - time));
//time = clock(); //time = clock();
update_network_gpu(net); update_network_gpu(net);
@ -291,10 +258,14 @@ float *network_predict_gpu(network net, float *input)
{ {
int size = get_network_input_size(net) * net.batch; int size = get_network_input_size(net) * net.batch;
float * input_gpu = cuda_make_array(input, size); network_state state;
forward_network_gpu(net, input_gpu, 0, 0); state.input = cuda_make_array(input, size);
state.truth = 0;
state.train = 0;
state.delta = 0;
forward_network_gpu(net, state);
float *out = get_network_output_gpu(net); float *out = get_network_output_gpu(net);
cuda_free(input_gpu); cuda_free(state.input);
return out; return out;
} }

View File

@ -59,28 +59,29 @@ void sub_square_array(float *src, float *dest, int n)
} }
} }
void forward_normalization_layer(const normalization_layer layer, float *in) void forward_normalization_layer(const normalization_layer layer, network_state state)
{ {
int i,j,k; int i,j,k;
memset(layer.sums, 0, layer.h*layer.w*sizeof(float)); memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
int imsize = layer.h*layer.w; int imsize = layer.h*layer.w;
for(j = 0; j < layer.size/2; ++j){ for(j = 0; j < layer.size/2; ++j){
if(j < layer.c) add_square_array(in+j*imsize, layer.sums, imsize); if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
} }
for(k = 0; k < layer.c; ++k){ for(k = 0; k < layer.c; ++k){
int next = k+layer.size/2; int next = k+layer.size/2;
int prev = k-layer.size/2-1; int prev = k-layer.size/2-1;
if(next < layer.c) add_square_array(in+next*imsize, layer.sums, imsize); if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
if(prev > 0) sub_square_array(in+prev*imsize, layer.sums, imsize); if(prev > 0) sub_square_array(state.input+prev*imsize, layer.sums, imsize);
for(i = 0; i < imsize; ++i){ for(i = 0; i < imsize; ++i){
layer.output[k*imsize + i] = in[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta); layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
} }
} }
} }
void backward_normalization_layer(const normalization_layer layer, float *in, float *delta) void backward_normalization_layer(const normalization_layer layer, network_state state)
{ {
//TODO! // TODO!
// OR NOT TODO!!
} }
void visualize_normalization_layer(normalization_layer layer, char *window) void visualize_normalization_layer(normalization_layer layer, char *window)

View File

@ -2,6 +2,7 @@
#define NORMALIZATION_LAYER_H #define NORMALIZATION_LAYER_H
#include "image.h" #include "image.h"
#include "params.h"
typedef struct { typedef struct {
int batch; int batch;
@ -18,8 +19,8 @@ typedef struct {
image get_normalization_image(normalization_layer layer); image get_normalization_image(normalization_layer layer);
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa); normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
void resize_normalization_layer(normalization_layer *layer, int h, int w); void resize_normalization_layer(normalization_layer *layer, int h, int w);
void forward_normalization_layer(const normalization_layer layer, float *in); void forward_normalization_layer(const normalization_layer layer, network_state state);
void backward_normalization_layer(const normalization_layer layer, float *in, float *delta); void backward_normalization_layer(const normalization_layer layer, network_state state);
void visualize_normalization_layer(normalization_layer layer, char *window); void visualize_normalization_layer(normalization_layer layer, char *window);
#endif #endif

12
src/params.h Normal file
View File

@ -0,0 +1,12 @@
#ifndef PARAMS_H
#define PARAMS_H
typedef struct {
float *truth;
float *input;
float *delta;
int train;
} network_state;
#endif

View File

@ -14,7 +14,6 @@
#include "softmax_layer.h" #include "softmax_layer.h"
#include "dropout_layer.h" #include "dropout_layer.h"
#include "detection_layer.h" #include "detection_layer.h"
#include "freeweight_layer.h"
#include "list.h" #include "list.h"
#include "option_list.h" #include "option_list.h"
#include "utils.h" #include "utils.h"
@ -24,12 +23,12 @@ typedef struct{
list *options; list *options;
}section; }section;
int is_network(section *s);
int is_convolutional(section *s); int is_convolutional(section *s);
int is_deconvolutional(section *s); int is_deconvolutional(section *s);
int is_connected(section *s); int is_connected(section *s);
int is_maxpool(section *s); int is_maxpool(section *s);
int is_dropout(section *s); int is_dropout(section *s);
int is_freeweight(section *s);
int is_softmax(section *s); int is_softmax(section *s);
int is_crop(section *s); int is_crop(section *s);
int is_cost(section *s); int is_cost(section *s);
@ -69,38 +68,31 @@ void parse_data(char *data, float *a, int n)
} }
} }
deconvolutional_layer *parse_deconvolutional(list *options, network *net, int count) typedef struct size_params{
int batch;
int inputs;
int h;
int w;
int c;
} size_params;
deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
{ {
int h,w,c;
float learning_rate, momentum, decay;
int n = option_find_int(options, "filters",1); int n = option_find_int(options, "filters",1);
int size = option_find_int(options, "size",1); int size = option_find_int(options, "size",1);
int stride = option_find_int(options, "stride",1); int stride = option_find_int(options, "stride",1);
char *activation_s = option_find_str(options, "activation", "logistic"); char *activation_s = option_find_str(options, "activation", "logistic");
ACTIVATION activation = get_activation(activation_s); ACTIVATION activation = get_activation(activation_s);
if(count == 0){
learning_rate = option_find_float(options, "learning_rate", .001); int batch,h,w,c;
momentum = option_find_float(options, "momentum", .9); h = params.h;
decay = option_find_float(options, "decay", .0001); w = params.w;
h = option_find_int(options, "height",1); c = params.c;
w = option_find_int(options, "width",1); batch=params.batch;
c = option_find_int(options, "channels",1); if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
net->batch = option_find_int(options, "batch",1);
net->learning_rate = learning_rate; deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
net->momentum = momentum;
net->decay = decay;
net->seen = option_find_int(options, "seen",0);
}else{
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
momentum = option_find_float_quiet(options, "momentum", net->momentum);
decay = option_find_float_quiet(options, "decay", net->decay);
image m = get_network_image_layer(*net, count-1);
h = m.h;
w = m.w;
c = m.c;
if(h == 0) error("Layer before deconvolutional layer must output image.");
}
deconvolutional_layer *layer = make_deconvolutional_layer(net->batch,h,w,c,n,size,stride,activation,learning_rate,momentum,decay);
char *weights = option_find_str(options, "weights", 0); char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0); char *biases = option_find_str(options, "biases", 0);
parse_data(weights, layer->filters, c*n*size*size); parse_data(weights, layer->filters, c*n*size*size);
@ -112,39 +104,24 @@ deconvolutional_layer *parse_deconvolutional(list *options, network *net, int co
return layer; return layer;
} }
convolutional_layer *parse_convolutional(list *options, network *net, int count) convolutional_layer *parse_convolutional(list *options, size_params params)
{ {
int h,w,c;
float learning_rate, momentum, decay;
int n = option_find_int(options, "filters",1); int n = option_find_int(options, "filters",1);
int size = option_find_int(options, "size",1); int size = option_find_int(options, "size",1);
int stride = option_find_int(options, "stride",1); int stride = option_find_int(options, "stride",1);
int pad = option_find_int(options, "pad",0); int pad = option_find_int(options, "pad",0);
char *activation_s = option_find_str(options, "activation", "logistic"); char *activation_s = option_find_str(options, "activation", "logistic");
ACTIVATION activation = get_activation(activation_s); ACTIVATION activation = get_activation(activation_s);
if(count == 0){
learning_rate = option_find_float(options, "learning_rate", .001); int batch,h,w,c;
momentum = option_find_float(options, "momentum", .9); h = params.h;
decay = option_find_float(options, "decay", .0001); w = params.w;
h = option_find_int(options, "height",1); c = params.c;
w = option_find_int(options, "width",1); batch=params.batch;
c = option_find_int(options, "channels",1); if(!(h && w && c)) error("Layer before convolutional layer must output image.");
net->batch = option_find_int(options, "batch",1);
net->learning_rate = learning_rate; convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
net->momentum = momentum;
net->decay = decay;
net->seen = option_find_int(options, "seen",0);
}else{
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
momentum = option_find_float_quiet(options, "momentum", net->momentum);
decay = option_find_float_quiet(options, "decay", net->decay);
image m = get_network_image_layer(*net, count-1);
h = m.h;
w = m.w;
c = m.c;
if(h == 0) error("Layer before convolutional layer must output image.");
}
convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
char *weights = option_find_str(options, "weights", 0); char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0); char *biases = option_find_str(options, "biases", 0);
parse_data(weights, layer->filters, c*n*size*size); parse_data(weights, layer->filters, c*n*size*size);
@ -156,33 +133,18 @@ convolutional_layer *parse_convolutional(list *options, network *net, int count)
return layer; return layer;
} }
connected_layer *parse_connected(list *options, network *net, int count) connected_layer *parse_connected(list *options, size_params params)
{ {
int input;
float learning_rate, momentum, decay;
int output = option_find_int(options, "output",1); int output = option_find_int(options, "output",1);
char *activation_s = option_find_str(options, "activation", "logistic"); char *activation_s = option_find_str(options, "activation", "logistic");
ACTIVATION activation = get_activation(activation_s); ACTIVATION activation = get_activation(activation_s);
if(count == 0){
input = option_find_int(options, "input",1); connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
net->batch = option_find_int(options, "batch",1);
learning_rate = option_find_float(options, "learning_rate", .001);
momentum = option_find_float(options, "momentum", .9);
decay = option_find_float(options, "decay", .0001);
net->learning_rate = learning_rate;
net->momentum = momentum;
net->decay = decay;
}else{
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
momentum = option_find_float_quiet(options, "momentum", net->momentum);
decay = option_find_float_quiet(options, "decay", net->decay);
input = get_network_output_size_layer(*net, count-1);
}
connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
char *weights = option_find_str(options, "weights", 0); char *weights = option_find_str(options, "weights", 0);
char *biases = option_find_str(options, "biases", 0); char *biases = option_find_str(options, "biases", 0);
parse_data(biases, layer->biases, output); parse_data(biases, layer->biases, output);
parse_data(weights, layer->weights, input*output); parse_data(weights, layer->weights, params.inputs*output);
#ifdef GPU #ifdef GPU
if(weights || biases) push_connected_layer(*layer); if(weights || biases) push_connected_layer(*layer);
#endif #endif
@ -190,235 +152,188 @@ connected_layer *parse_connected(list *options, network *net, int count)
return layer; return layer;
} }
softmax_layer *parse_softmax(list *options, network *net, int count) softmax_layer *parse_softmax(list *options, size_params params)
{ {
int input;
int groups = option_find_int(options, "groups",1); int groups = option_find_int(options, "groups",1);
if(count == 0){ softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
input = option_find_int(options, "input",1);
net->batch = option_find_int(options, "batch",1);
net->seen = option_find_int(options, "seen",0);
}else{
input = get_network_output_size_layer(*net, count-1);
}
softmax_layer *layer = make_softmax_layer(net->batch, groups, input);
option_unused(options); option_unused(options);
return layer; return layer;
} }
detection_layer *parse_detection(list *options, network *net, int count) detection_layer *parse_detection(list *options, size_params params)
{ {
int input;
if(count == 0){
input = option_find_int(options, "input",1);
net->batch = option_find_int(options, "batch",1);
net->seen = option_find_int(options, "seen",0);
}else{
input = get_network_output_size_layer(*net, count-1);
}
int coords = option_find_int(options, "coords", 1); int coords = option_find_int(options, "coords", 1);
int classes = option_find_int(options, "classes", 1); int classes = option_find_int(options, "classes", 1);
int rescore = option_find_int(options, "rescore", 1); int rescore = option_find_int(options, "rescore", 1);
detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore); detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore);
option_unused(options); option_unused(options);
return layer; return layer;
} }
cost_layer *parse_cost(list *options, network *net, int count) cost_layer *parse_cost(list *options, size_params params)
{ {
int input;
if(count == 0){
input = option_find_int(options, "input",1);
net->batch = option_find_int(options, "batch",1);
net->seen = option_find_int(options, "seen",0);
}else{
input = get_network_output_size_layer(*net, count-1);
}
char *type_s = option_find_str(options, "type", "sse"); char *type_s = option_find_str(options, "type", "sse");
COST_TYPE type = get_cost_type(type_s); COST_TYPE type = get_cost_type(type_s);
cost_layer *layer = make_cost_layer(net->batch, input, type); cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
option_unused(options); option_unused(options);
return layer; return layer;
} }
crop_layer *parse_crop(list *options, network *net, int count) crop_layer *parse_crop(list *options, size_params params)
{ {
float learning_rate, momentum, decay;
int h,w,c;
int crop_height = option_find_int(options, "crop_height",1); int crop_height = option_find_int(options, "crop_height",1);
int crop_width = option_find_int(options, "crop_width",1); int crop_width = option_find_int(options, "crop_width",1);
int flip = option_find_int(options, "flip",0); int flip = option_find_int(options, "flip",0);
if(count == 0){
h = option_find_int(options, "height",1); int batch,h,w,c;
w = option_find_int(options, "width",1); h = params.h;
c = option_find_int(options, "channels",1); w = params.w;
net->batch = option_find_int(options, "batch",1); c = params.c;
learning_rate = option_find_float(options, "learning_rate", .001); batch=params.batch;
momentum = option_find_float(options, "momentum", .9); if(!(h && w && c)) error("Layer before crop layer must output image.");
decay = option_find_float(options, "decay", .0001);
net->learning_rate = learning_rate; crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip);
net->momentum = momentum;
net->decay = decay;
net->seen = option_find_int(options, "seen",0);
}else{
image m = get_network_image_layer(*net, count-1);
h = m.h;
w = m.w;
c = m.c;
if(h == 0) error("Layer before crop layer must output image.");
}
crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
option_unused(options); option_unused(options);
return layer; return layer;
} }
maxpool_layer *parse_maxpool(list *options, network *net, int count) maxpool_layer *parse_maxpool(list *options, size_params params)
{ {
int h,w,c;
int stride = option_find_int(options, "stride",1); int stride = option_find_int(options, "stride",1);
int size = option_find_int(options, "size",stride); int size = option_find_int(options, "size",stride);
if(count == 0){
h = option_find_int(options, "height",1); int batch,h,w,c;
w = option_find_int(options, "width",1); h = params.h;
c = option_find_int(options, "channels",1); w = params.w;
net->batch = option_find_int(options, "batch",1); c = params.c;
net->seen = option_find_int(options, "seen",0); batch=params.batch;
}else{ if(!(h && w && c)) error("Layer before maxpool layer must output image.");
image m = get_network_image_layer(*net, count-1);
h = m.h; maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
w = m.w;
c = m.c;
if(h == 0) error("Layer before convolutional layer must output image.");
}
maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
option_unused(options); option_unused(options);
return layer; return layer;
} }
/* dropout_layer *parse_dropout(list *options, size_params params)
freeweight_layer *parse_freeweight(list *options, network *net, int count)
{ {
int input;
if(count == 0){
net->batch = option_find_int(options, "batch",1);
input = option_find_int(options, "input",1);
}else{
input = get_network_output_size_layer(*net, count-1);
}
freeweight_layer *layer = make_freeweight_layer(net->batch,input);
option_unused(options);
return layer;
}
*/
dropout_layer *parse_dropout(list *options, network *net, int count)
{
int input;
float probability = option_find_float(options, "probability", .5); float probability = option_find_float(options, "probability", .5);
if(count == 0){ dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
net->batch = option_find_int(options, "batch",1);
input = option_find_int(options, "input",1);
float learning_rate = option_find_float(options, "learning_rate", .001);
float momentum = option_find_float(options, "momentum", .9);
float decay = option_find_float(options, "decay", .0001);
net->learning_rate = learning_rate;
net->momentum = momentum;
net->decay = decay;
net->seen = option_find_int(options, "seen",0);
}else{
input = get_network_output_size_layer(*net, count-1);
}
dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
option_unused(options); option_unused(options);
return layer; return layer;
} }
normalization_layer *parse_normalization(list *options, network *net, int count) normalization_layer *parse_normalization(list *options, size_params params)
{ {
int h,w,c;
int size = option_find_int(options, "size",1); int size = option_find_int(options, "size",1);
float alpha = option_find_float(options, "alpha", 0.); float alpha = option_find_float(options, "alpha", 0.);
float beta = option_find_float(options, "beta", 1.); float beta = option_find_float(options, "beta", 1.);
float kappa = option_find_float(options, "kappa", 1.); float kappa = option_find_float(options, "kappa", 1.);
if(count == 0){
h = option_find_int(options, "height",1); int batch,h,w,c;
w = option_find_int(options, "width",1); h = params.h;
c = option_find_int(options, "channels",1); w = params.w;
net->batch = option_find_int(options, "batch",1); c = params.c;
net->seen = option_find_int(options, "seen",0); batch=params.batch;
}else{ if(!(h && w && c)) error("Layer before normalization layer must output image.");
image m = get_network_image_layer(*net, count-1);
h = m.h; normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
w = m.w;
c = m.c;
if(h == 0) error("Layer before convolutional layer must output image.");
}
normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
option_unused(options); option_unused(options);
return layer; return layer;
} }
void parse_net_options(list *options, network *net)
{
net->batch = option_find_int(options, "batch",1);
net->learning_rate = option_find_float(options, "learning_rate", .001);
net->momentum = option_find_float(options, "momentum", .9);
net->decay = option_find_float(options, "decay", .0001);
net->seen = option_find_int(options, "seen",0);
net->h = option_find_int_quiet(options, "height",0);
net->w = option_find_int_quiet(options, "width",0);
net->c = option_find_int_quiet(options, "channels",0);
net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
}
network parse_network_cfg(char *filename) network parse_network_cfg(char *filename)
{ {
list *sections = read_cfg(filename); list *sections = read_cfg(filename);
network net = make_network(sections->size, 0);
node *n = sections->front; node *n = sections->front;
if(!n) error("Config file has no sections");
network net = make_network(sections->size - 1);
size_params params;
section *s = (section *)n->val;
list *options = s->options;
if(!is_network(s)) error("First section must be [net] or [network]");
parse_net_options(options, &net);
params.h = net.h;
params.w = net.w;
params.c = net.c;
params.inputs = net.inputs;
params.batch = net.batch;
n = n->next;
int count = 0; int count = 0;
while(n){ while(n){
section *s = (section *)n->val; fprintf(stderr, "%d: ", count);
list *options = s->options; s = (section *)n->val;
options = s->options;
if(is_convolutional(s)){ if(is_convolutional(s)){
convolutional_layer *layer = parse_convolutional(options, &net, count); convolutional_layer *layer = parse_convolutional(options, params);
net.types[count] = CONVOLUTIONAL; net.types[count] = CONVOLUTIONAL;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_deconvolutional(s)){ }else if(is_deconvolutional(s)){
deconvolutional_layer *layer = parse_deconvolutional(options, &net, count); deconvolutional_layer *layer = parse_deconvolutional(options, params);
net.types[count] = DECONVOLUTIONAL; net.types[count] = DECONVOLUTIONAL;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_connected(s)){ }else if(is_connected(s)){
connected_layer *layer = parse_connected(options, &net, count); connected_layer *layer = parse_connected(options, params);
net.types[count] = CONNECTED; net.types[count] = CONNECTED;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_crop(s)){ }else if(is_crop(s)){
crop_layer *layer = parse_crop(options, &net, count); crop_layer *layer = parse_crop(options, params);
net.types[count] = CROP; net.types[count] = CROP;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_cost(s)){ }else if(is_cost(s)){
cost_layer *layer = parse_cost(options, &net, count); cost_layer *layer = parse_cost(options, params);
net.types[count] = COST; net.types[count] = COST;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_detection(s)){ }else if(is_detection(s)){
detection_layer *layer = parse_detection(options, &net, count); detection_layer *layer = parse_detection(options, params);
net.types[count] = DETECTION; net.types[count] = DETECTION;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_softmax(s)){ }else if(is_softmax(s)){
softmax_layer *layer = parse_softmax(options, &net, count); softmax_layer *layer = parse_softmax(options, params);
net.types[count] = SOFTMAX; net.types[count] = SOFTMAX;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_maxpool(s)){ }else if(is_maxpool(s)){
maxpool_layer *layer = parse_maxpool(options, &net, count); maxpool_layer *layer = parse_maxpool(options, params);
net.types[count] = MAXPOOL; net.types[count] = MAXPOOL;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_normalization(s)){ }else if(is_normalization(s)){
normalization_layer *layer = parse_normalization(options, &net, count); normalization_layer *layer = parse_normalization(options, params);
net.types[count] = NORMALIZATION; net.types[count] = NORMALIZATION;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_dropout(s)){ }else if(is_dropout(s)){
dropout_layer *layer = parse_dropout(options, &net, count); dropout_layer *layer = parse_dropout(options, params);
net.types[count] = DROPOUT; net.types[count] = DROPOUT;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_freeweight(s)){
//freeweight_layer *layer = parse_freeweight(options, &net, count);
//net.types[count] = FREEWEIGHT;
//net.layers[count] = layer;
fprintf(stderr, "Type not recognized: %s\n", s->type);
}else{ }else{
fprintf(stderr, "Type not recognized: %s\n", s->type); fprintf(stderr, "Type not recognized: %s\n", s->type);
} }
free_section(s); free_section(s);
++count;
n = n->next; n = n->next;
if(n){
image im = get_network_image_layer(net, count);
params.h = im.h;
params.w = im.w;
params.c = im.c;
params.inputs = get_network_output_size_layer(net, count);
}
++count;
} }
free_list(sections); free_list(sections);
net.outputs = get_network_output_size(net); net.outputs = get_network_output_size(net);
@ -448,6 +363,11 @@ int is_convolutional(section *s)
return (strcmp(s->type, "[conv]")==0 return (strcmp(s->type, "[conv]")==0
|| strcmp(s->type, "[convolutional]")==0); || strcmp(s->type, "[convolutional]")==0);
} }
int is_network(section *s)
{
return (strcmp(s->type, "[net]")==0
|| strcmp(s->type, "[network]")==0);
}
int is_connected(section *s) int is_connected(section *s)
{ {
return (strcmp(s->type, "[conn]")==0 return (strcmp(s->type, "[conn]")==0
@ -462,10 +382,6 @@ int is_dropout(section *s)
{ {
return (strcmp(s->type, "[dropout]")==0); return (strcmp(s->type, "[dropout]")==0);
} }
int is_freeweight(section *s)
{
return (strcmp(s->type, "[freeweight]")==0);
}
int is_softmax(section *s) int is_softmax(section *s)
{ {
@ -533,29 +449,11 @@ list *read_cfg(char *filename)
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count) void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
{ {
#ifdef GPU #ifdef GPU
if(gpu_index >= 0) pull_convolutional_layer(*l); if(gpu_index >= 0) pull_convolutional_layer(*l);
#endif #endif
int i; int i;
fprintf(fp, "[convolutional]\n"); fprintf(fp, "[convolutional]\n");
if(count == 0) {
fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n"
"channels=%d\n"
"learning_rate=%g\n"
"momentum=%g\n"
"decay=%g\n"
"seen=%d\n",
l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
} else {
if(l->learning_rate != net.learning_rate)
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
if(l->momentum != net.momentum)
fprintf(fp, "momentum=%g\n", l->momentum);
if(l->decay != net.decay)
fprintf(fp, "decay=%g\n", l->decay);
}
fprintf(fp, "filters=%d\n" fprintf(fp, "filters=%d\n"
"size=%d\n" "size=%d\n"
"stride=%d\n" "stride=%d\n"
@ -573,29 +471,11 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count) void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
{ {
#ifdef GPU #ifdef GPU
if(gpu_index >= 0) pull_deconvolutional_layer(*l); if(gpu_index >= 0) pull_deconvolutional_layer(*l);
#endif #endif
int i; int i;
fprintf(fp, "[deconvolutional]\n"); fprintf(fp, "[deconvolutional]\n");
if(count == 0) {
fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n"
"channels=%d\n"
"learning_rate=%g\n"
"momentum=%g\n"
"decay=%g\n"
"seen=%d\n",
l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
} else {
if(l->learning_rate != net.learning_rate)
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
if(l->momentum != net.momentum)
fprintf(fp, "momentum=%g\n", l->momentum);
if(l->decay != net.decay)
fprintf(fp, "decay=%g\n", l->decay);
}
fprintf(fp, "filters=%d\n" fprintf(fp, "filters=%d\n"
"size=%d\n" "size=%d\n"
"stride=%d\n" "stride=%d\n"
@ -610,47 +490,19 @@ void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net,
fprintf(fp, "\n\n"); fprintf(fp, "\n\n");
} }
void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
{
fprintf(fp, "[freeweight]\n");
if(count == 0){
fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
}
fprintf(fp, "\n");
}
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count) void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
{ {
fprintf(fp, "[dropout]\n"); fprintf(fp, "[dropout]\n");
if(count == 0){
fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
}
fprintf(fp, "probability=%g\n\n", l->probability); fprintf(fp, "probability=%g\n\n", l->probability);
} }
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count) void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
{ {
#ifdef GPU #ifdef GPU
if(gpu_index >= 0) pull_connected_layer(*l); if(gpu_index >= 0) pull_connected_layer(*l);
#endif #endif
int i; int i;
fprintf(fp, "[connected]\n"); fprintf(fp, "[connected]\n");
if(count == 0){
fprintf(fp, "batch=%d\n"
"input=%d\n"
"learning_rate=%g\n"
"momentum=%g\n"
"decay=%g\n"
"seen=%d\n",
l->batch, l->inputs, l->learning_rate, l->momentum, l->decay, net.seen);
} else {
if(l->learning_rate != net.learning_rate)
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
if(l->momentum != net.momentum)
fprintf(fp, "momentum=%g\n", l->momentum);
if(l->decay != net.decay)
fprintf(fp, "decay=%g\n", l->decay);
}
fprintf(fp, "output=%d\n" fprintf(fp, "output=%d\n"
"activation=%s\n", "activation=%s\n",
l->outputs, l->outputs,
@ -666,39 +518,18 @@ void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count) void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
{ {
fprintf(fp, "[crop]\n"); fprintf(fp, "[crop]\n");
if(count == 0) {
fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n"
"channels=%d\n"
"learning_rate=%g\n"
"momentum=%g\n"
"decay=%g\n"
"seen=%d\n",
l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay, net.seen);
}
fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip); fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
} }
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
{ {
fprintf(fp, "[maxpool]\n"); fprintf(fp, "[maxpool]\n");
if(count == 0) fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n"
"channels=%d\n",
l->batch,l->h, l->w, l->c);
fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride); fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
} }
void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count) void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
{ {
fprintf(fp, "[localresponsenormalization]\n"); fprintf(fp, "[localresponsenormalization]\n");
if(count == 0) fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n"
"channels=%d\n",
l->batch,l->h, l->w, l->c);
fprintf(fp, "size=%d\n" fprintf(fp, "size=%d\n"
"alpha=%g\n" "alpha=%g\n"
"beta=%g\n" "beta=%g\n"
@ -708,7 +539,6 @@ void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count) void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
{ {
fprintf(fp, "[softmax]\n"); fprintf(fp, "[softmax]\n");
if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
fprintf(fp, "\n"); fprintf(fp, "\n");
} }
@ -722,7 +552,6 @@ void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count) void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{ {
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type)); fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
fprintf(fp, "\n"); fprintf(fp, "\n");
} }
@ -741,33 +570,33 @@ void save_weights(network net, char *filename)
for(i = 0; i < net.n; ++i){ for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *) net.layers[i]; convolutional_layer layer = *(convolutional_layer *) net.layers[i];
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
pull_convolutional_layer(layer); pull_convolutional_layer(layer);
} }
#endif #endif
int num = layer.n*layer.c*layer.size*layer.size; int num = layer.n*layer.c*layer.size*layer.size;
fwrite(layer.biases, sizeof(float), layer.n, fp); fwrite(layer.biases, sizeof(float), layer.n, fp);
fwrite(layer.filters, sizeof(float), num, fp); fwrite(layer.filters, sizeof(float), num, fp);
} }
if(net.types[i] == DECONVOLUTIONAL){ if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i]; deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
pull_deconvolutional_layer(layer); pull_deconvolutional_layer(layer);
} }
#endif #endif
int num = layer.n*layer.c*layer.size*layer.size; int num = layer.n*layer.c*layer.size*layer.size;
fwrite(layer.biases, sizeof(float), layer.n, fp); fwrite(layer.biases, sizeof(float), layer.n, fp);
fwrite(layer.filters, sizeof(float), num, fp); fwrite(layer.filters, sizeof(float), num, fp);
} }
if(net.types[i] == CONNECTED){ if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net.layers[i]; connected_layer layer = *(connected_layer *) net.layers[i];
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
pull_connected_layer(layer); pull_connected_layer(layer);
} }
#endif #endif
fwrite(layer.biases, sizeof(float), layer.outputs, fp); fwrite(layer.biases, sizeof(float), layer.outputs, fp);
fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
} }
@ -785,8 +614,7 @@ void load_weights_upto(network *net, char *filename, int cutoff)
fread(&net->momentum, sizeof(float), 1, fp); fread(&net->momentum, sizeof(float), 1, fp);
fread(&net->decay, sizeof(float), 1, fp); fread(&net->decay, sizeof(float), 1, fp);
fread(&net->seen, sizeof(int), 1, fp); fread(&net->seen, sizeof(int), 1, fp);
set_learning_network(net, net->learning_rate, net->momentum, net->decay);
int i; int i;
for(i = 0; i < net->n && i < cutoff; ++i){ for(i = 0; i < net->n && i < cutoff; ++i){
if(net->types[i] == CONVOLUTIONAL){ if(net->types[i] == CONVOLUTIONAL){
@ -794,32 +622,32 @@ void load_weights_upto(network *net, char *filename, int cutoff)
int num = layer.n*layer.c*layer.size*layer.size; int num = layer.n*layer.c*layer.size*layer.size;
fread(layer.biases, sizeof(float), layer.n, fp); fread(layer.biases, sizeof(float), layer.n, fp);
fread(layer.filters, sizeof(float), num, fp); fread(layer.filters, sizeof(float), num, fp);
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
push_convolutional_layer(layer); push_convolutional_layer(layer);
} }
#endif #endif
} }
if(net->types[i] == DECONVOLUTIONAL){ if(net->types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i]; deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
int num = layer.n*layer.c*layer.size*layer.size; int num = layer.n*layer.c*layer.size*layer.size;
fread(layer.biases, sizeof(float), layer.n, fp); fread(layer.biases, sizeof(float), layer.n, fp);
fread(layer.filters, sizeof(float), num, fp); fread(layer.filters, sizeof(float), num, fp);
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
push_deconvolutional_layer(layer); push_deconvolutional_layer(layer);
} }
#endif #endif
} }
if(net->types[i] == CONNECTED){ if(net->types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net->layers[i]; connected_layer layer = *(connected_layer *) net->layers[i];
fread(layer.biases, sizeof(float), layer.outputs, fp); fread(layer.biases, sizeof(float), layer.outputs, fp);
fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
#ifdef GPU #ifdef GPU
if(gpu_index >= 0){ if(gpu_index >= 0){
push_connected_layer(layer); push_connected_layer(layer);
} }
#endif #endif
} }
} }
fclose(fp); fclose(fp);
@ -847,8 +675,6 @@ void save_network(network net, char *filename)
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i); print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
else if(net.types[i] == MAXPOOL) else if(net.types[i] == MAXPOOL)
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
else if(net.types[i] == FREEWEIGHT)
print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
else if(net.types[i] == DROPOUT) else if(net.types[i] == DROPOUT)
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i); print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
else if(net.types[i] == NORMALIZATION) else if(net.types[i] == NORMALIZATION)

View File

@ -7,7 +7,7 @@
#include <stdio.h> #include <stdio.h>
#include <assert.h> #include <assert.h>
softmax_layer *make_softmax_layer(int batch, int groups, int inputs) softmax_layer *make_softmax_layer(int batch, int inputs, int groups)
{ {
assert(inputs%groups == 0); assert(inputs%groups == 0);
fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
@ -42,21 +42,21 @@ void softmax_array(float *input, int n, float *output)
} }
} }
void forward_softmax_layer(const softmax_layer layer, float *input) void forward_softmax_layer(const softmax_layer layer, network_state state)
{ {
int b; int b;
int inputs = layer.inputs / layer.groups; int inputs = layer.inputs / layer.groups;
int batch = layer.batch * layer.groups; int batch = layer.batch * layer.groups;
for(b = 0; b < batch; ++b){ for(b = 0; b < batch; ++b){
softmax_array(input+b*inputs, inputs, layer.output+b*inputs); softmax_array(state.input+b*inputs, inputs, layer.output+b*inputs);
} }
} }
void backward_softmax_layer(const softmax_layer layer, float *delta) void backward_softmax_layer(const softmax_layer layer, network_state state)
{ {
int i; int i;
for(i = 0; i < layer.inputs*layer.batch; ++i){ for(i = 0; i < layer.inputs*layer.batch; ++i){
delta[i] = layer.delta[i]; state.delta[i] = layer.delta[i];
} }
} }

View File

@ -1,5 +1,6 @@
#ifndef SOFTMAX_LAYER_H #ifndef SOFTMAX_LAYER_H
#define SOFTMAX_LAYER_H #define SOFTMAX_LAYER_H
#include "params.h"
typedef struct { typedef struct {
int inputs; int inputs;
@ -14,14 +15,14 @@ typedef struct {
} softmax_layer; } softmax_layer;
void softmax_array(float *input, int n, float *output); void softmax_array(float *input, int n, float *output);
softmax_layer *make_softmax_layer(int batch, int groups, int inputs); softmax_layer *make_softmax_layer(int batch, int inputs, int groups);
void forward_softmax_layer(const softmax_layer layer, float *input); void forward_softmax_layer(const softmax_layer layer, network_state state);
void backward_softmax_layer(const softmax_layer layer, float *delta); void backward_softmax_layer(const softmax_layer layer, network_state state);
#ifdef GPU #ifdef GPU
void pull_softmax_layer_output(const softmax_layer layer); void pull_softmax_layer_output(const softmax_layer layer);
void forward_softmax_layer_gpu(const softmax_layer layer, float *input); void forward_softmax_layer_gpu(const softmax_layer layer, network_state state);
void backward_softmax_layer_gpu(const softmax_layer layer, float *delta); void backward_softmax_layer_gpu(const softmax_layer layer, network_state state);
#endif #endif
#endif #endif

View File

@ -32,23 +32,17 @@ extern "C" void pull_softmax_layer_output(const softmax_layer layer)
cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch); cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
} }
extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, float *input) extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, network_state state)
{ {
int inputs = layer.inputs / layer.groups; int inputs = layer.inputs / layer.groups;
int batch = layer.batch * layer.groups; int batch = layer.batch * layer.groups;
forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, input, layer.output_gpu); forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, state.input, layer.output_gpu);
check_error(cudaPeekAtLastError()); check_error(cudaPeekAtLastError());
/*
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
int z;
for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
*/
} }
extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, float *delta) extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, network_state state)
{ {
copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1); copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
} }
/* This is if you want softmax w/o log-loss classification. You probably don't. /* This is if you want softmax w/o log-loss classification. You probably don't.