mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added detection on images from the txt list file by using SO/DLL.
This commit is contained in:
@ -73,15 +73,15 @@ int main()
|
|||||||
#ifdef OPENCV
|
#ifdef OPENCV
|
||||||
std::string const file_ext = filename.substr(filename.find_last_of(".") + 1);
|
std::string const file_ext = filename.substr(filename.find_last_of(".") + 1);
|
||||||
if (file_ext == "avi" || file_ext == "mp4" || file_ext == "mjpg" || file_ext == "mov") { // video file
|
if (file_ext == "avi" || file_ext == "mp4" || file_ext == "mjpg" || file_ext == "mov") { // video file
|
||||||
cv::Mat frame, prev_frame;
|
cv::Mat frame, prev_frame, det_frame;
|
||||||
std::vector<bbox_t> result_vec, thread_result_vec;
|
std::vector<bbox_t> result_vec, thread_result_vec;
|
||||||
detector.nms = 0.02; // comment it - if track_id is not required
|
detector.nms = 0.02; // comment it - if track_id is not required
|
||||||
std::thread td([]() {});
|
std::thread td([]() {});
|
||||||
for (cv::VideoCapture cap(filename); cap >> frame, cap.isOpened();) {
|
for (cv::VideoCapture cap(filename); cap >> frame, cap.isOpened();) {
|
||||||
td.join();
|
td.join();
|
||||||
result_vec = thread_result_vec;
|
result_vec = thread_result_vec;
|
||||||
cv::Mat det_frame = frame;
|
det_frame = frame;
|
||||||
td = std::thread([&]() { thread_result_vec = detector.detect(det_frame, 0.2); });
|
td = std::thread([&]() { thread_result_vec = detector.detect(det_frame, 0.2, true); });
|
||||||
|
|
||||||
if (!prev_frame.empty()) {
|
if (!prev_frame.empty()) {
|
||||||
result_vec = detector.tracking(result_vec); // comment it - if track_id is not required
|
result_vec = detector.tracking(result_vec); // comment it - if track_id is not required
|
||||||
@ -91,6 +91,16 @@ int main()
|
|||||||
prev_frame = frame;
|
prev_frame = frame;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
else if (file_ext == "txt") { // list of image files
|
||||||
|
std::ifstream file(filename);
|
||||||
|
if (!file.is_open()) std::cout << "File not found! \n";
|
||||||
|
else
|
||||||
|
for (std::string line; file >> line;) {
|
||||||
|
std::cout << line << std::endl;
|
||||||
|
show_result(detector.detect(cv::imread(line)), obj_names);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
else { // image file
|
else { // image file
|
||||||
cv::Mat mat_img = cv::imread(filename);
|
cv::Mat mat_img = cv::imread(filename);
|
||||||
std::vector<bbox_t> result_vec = detector.detect(mat_img);
|
std::vector<bbox_t> result_vec = detector.detect(mat_img);
|
||||||
|
@ -29,6 +29,7 @@ struct detector_gpu_t{
|
|||||||
image images[FRAMES];
|
image images[FRAMES];
|
||||||
float *avg;
|
float *avg;
|
||||||
float *predictions[FRAMES];
|
float *predictions[FRAMES];
|
||||||
|
int demo_index;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@ -112,11 +113,11 @@ YOLODLL_API int Detector::get_net_height() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh)
|
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean)
|
||||||
{
|
{
|
||||||
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
|
||||||
*image_ptr = load_image(image_filename);
|
*image_ptr = load_image(image_filename);
|
||||||
return detect(*image_ptr, thresh);
|
return detect(*image_ptr, thresh, use_mean);
|
||||||
}
|
}
|
||||||
|
|
||||||
static image load_image_stb(char *filename, int channels)
|
static image load_image_stb(char *filename, int channels)
|
||||||
@ -163,7 +164,7 @@ YOLODLL_API void Detector::free_image(image_t m)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
|
||||||
{
|
{
|
||||||
|
|
||||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||||
@ -196,7 +197,14 @@ YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
|||||||
|
|
||||||
float *X = sized.data;
|
float *X = sized.data;
|
||||||
|
|
||||||
network_predict(net, X);
|
float *prediction = network_predict(net, X);
|
||||||
|
|
||||||
|
if (use_mean) {
|
||||||
|
memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float));
|
||||||
|
mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg);
|
||||||
|
l.output = detector_gpu.avg;
|
||||||
|
detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
|
||||||
|
}
|
||||||
|
|
||||||
get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
|
get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
|
||||||
if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
|
if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
|
||||||
@ -269,8 +277,11 @@ YOLODLL_API std::vector<bbox_t> Detector::tracking(std::vector<bbox_t> cur_bbox_
|
|||||||
|
|
||||||
bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), [&](bbox_t const& b) { return b.track_id == i.track_id; });
|
bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), [&](bbox_t const& b) { return b.track_id == i.track_id; });
|
||||||
|
|
||||||
if (cur_index >= 0 && track_id_absent)
|
if (cur_index >= 0 && track_id_absent) {
|
||||||
cur_bbox_vec[cur_index].track_id = i.track_id;
|
cur_bbox_vec[cur_index].track_id = i.track_id;
|
||||||
|
cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2;
|
||||||
|
cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -47,8 +47,8 @@ public:
|
|||||||
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
|
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
|
||||||
YOLODLL_API ~Detector();
|
YOLODLL_API ~Detector();
|
||||||
|
|
||||||
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2);
|
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
|
||||||
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
|
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
|
||||||
static YOLODLL_API image_t load_image(std::string image_filename);
|
static YOLODLL_API image_t load_image(std::string image_filename);
|
||||||
static YOLODLL_API void free_image(image_t m);
|
static YOLODLL_API void free_image(image_t m);
|
||||||
YOLODLL_API int get_net_width();
|
YOLODLL_API int get_net_width();
|
||||||
@ -57,7 +57,7 @@ public:
|
|||||||
YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 4);
|
YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 4);
|
||||||
|
|
||||||
#ifdef OPENCV
|
#ifdef OPENCV
|
||||||
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2)
|
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
|
||||||
{
|
{
|
||||||
if(mat.data == NULL)
|
if(mat.data == NULL)
|
||||||
throw std::runtime_error("file not found");
|
throw std::runtime_error("file not found");
|
||||||
|
Reference in New Issue
Block a user