mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added support for building on Windows (QMake).
Open "darknet.pro" in Qt Creator, then build it. Pthreads: https://sourceware.org/pub/pthreads-win32/dll-latest/
This commit is contained in:
parent
f6d8617360
commit
e59bac5c51
3
.gitignore
vendored
3
.gitignore
vendored
@ -16,8 +16,9 @@ convnet/
|
||||
decaf/
|
||||
submission/
|
||||
cfg/
|
||||
darknet
|
||||
#darknet
|
||||
.fuse*
|
||||
*.user*
|
||||
|
||||
# OS Generated #
|
||||
.DS_Store*
|
||||
|
25
ThirdParty/CUDA.pri
vendored
Normal file
25
ThirdParty/CUDA.pri
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
# CUDA Lib
|
||||
|
||||
CUDA_ROOT = $$(CUDA_ROOT)
|
||||
isEmpty(CUDA_ROOT) {
|
||||
CUDA_ROOT = $$LIBS_ROOT/CUDA
|
||||
}
|
||||
|
||||
INCLUDEPATH += $$CUDA_ROOT/include
|
||||
|
||||
LIBS += -L$$CUDA_ROOT/bin
|
||||
LIBS += -L$$CUDA_ROOT/nvvm/bin
|
||||
LIBS += -L$$CUDA_ROOT/lib/x64 \
|
||||
-lcuda \
|
||||
-lcudart \
|
||||
-lcublas \
|
||||
-lcurand
|
||||
|
||||
# install
|
||||
install_dependency_cuda.path = $$INSTALL_PREFIX/bin
|
||||
install_dependency_cuda.files = \
|
||||
$$CUDA_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*cudart*$$INSTALL_DEPEND_LIB_FILE_SUFFIX* \
|
||||
$$CUDA_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*cublas*$$INSTALL_DEPEND_LIB_FILE_SUFFIX* \
|
||||
$$CUDA_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*curand*$$INSTALL_DEPEND_LIB_FILE_SUFFIX* \
|
||||
$$CUDA_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*cudnn*$$INSTALL_DEPEND_LIB_FILE_SUFFIX*
|
||||
INSTALLS += install_dependency_cuda
|
39
ThirdParty/OpenCV.pri
vendored
Normal file
39
ThirdParty/OpenCV.pri
vendored
Normal file
@ -0,0 +1,39 @@
|
||||
# OpenCV Lib
|
||||
|
||||
OPENCV_ROOT = $$(OPENCV_ROOT)
|
||||
isEmpty(OPENCV_ROOT) {
|
||||
OPENCV_ROOT = $$LIBS_ROOT/OpenCV
|
||||
}
|
||||
|
||||
include($$OPENCV_ROOT/info.pri) # define "CV_MAJOR_VERSION" and "CV_LIB_POSTFIX"
|
||||
|
||||
INCLUDEPATH += $$OPENCV_ROOT/include
|
||||
|
||||
win32 {
|
||||
CONFIG(debug, debug|release): OPENCV_LIB_POSTFIX = $$CV_LIB_POSTFIX"d"
|
||||
else: OPENCV_LIB_POSTFIX = $$CV_LIB_POSTFIX
|
||||
} else {
|
||||
}
|
||||
|
||||
LIBS += -L$$OPENCV_ROOT/bin
|
||||
LIBS += -L$$OPENCV_ROOT/lib \
|
||||
-lopencv_core$$OPENCV_LIB_POSTFIX \
|
||||
-lopencv_highgui$$OPENCV_LIB_POSTFIX \
|
||||
-lopencv_imgproc$$OPENCV_LIB_POSTFIX
|
||||
|
||||
greaterThan(CV_MAJOR_VERSION, 2) {
|
||||
LIBS += \
|
||||
-lopencv_imgcodecs$$OPENCV_LIB_POSTFIX \
|
||||
-lopencv_videoio$$OPENCV_LIB_POSTFIX
|
||||
!win32: CONFIG(debug, debug|release): QMAKE_CFLAGS += -O4 -g
|
||||
}
|
||||
|
||||
# install
|
||||
install_dependency_opencv.path = $$INSTALL_PREFIX/bin
|
||||
install_dependency_opencv.files = \
|
||||
$$OPENCV_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*opencv_core*$$INSTALL_DEPEND_LIB_FILE_SUFFIX* \
|
||||
$$OPENCV_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*opencv_highgui*$$INSTALL_DEPEND_LIB_FILE_SUFFIX* \
|
||||
$$OPENCV_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*opencv_imgproc*$$INSTALL_DEPEND_LIB_FILE_SUFFIX* \
|
||||
$$OPENCV_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*opencv_imgcodecs*$$INSTALL_DEPEND_LIB_FILE_SUFFIX* \
|
||||
$$OPENCV_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*opencv_videoio*$$INSTALL_DEPEND_LIB_FILE_SUFFIX*
|
||||
INSTALLS += install_dependency_opencv
|
17
ThirdParty/Pthreads.pri
vendored
Normal file
17
ThirdParty/Pthreads.pri
vendored
Normal file
@ -0,0 +1,17 @@
|
||||
# Pthreads Lib
|
||||
|
||||
PTHREADS_ROOT = $$(PTHREADS_ROOT)
|
||||
isEmpty(PTHREADS_ROOT) {
|
||||
PTHREADS_ROOT = $$LIBS_ROOT/Pthreads
|
||||
}
|
||||
|
||||
INCLUDEPATH += $$PTHREADS_ROOT/include
|
||||
|
||||
LIBS += -L$$PTHREADS_ROOT/bin
|
||||
LIBS += -L$$PTHREADS_ROOT/lib \
|
||||
-lpthreadVC2
|
||||
|
||||
# install
|
||||
install_dependency_pthreads.path = $$INSTALL_PREFIX/bin
|
||||
install_dependency_pthreads.files = $$PTHREADS_ROOT/$$INSTALL_DEPEND_LIB_DIR_NAME/*pthread*$$INSTALL_DEPEND_LIB_FILE_SUFFIX*
|
||||
INSTALLS += install_dependency_pthreads
|
4
darknet.pro
Normal file
4
darknet.pro
Normal file
@ -0,0 +1,4 @@
|
||||
TEMPLATE = subdirs
|
||||
|
||||
SUBDIRS += \
|
||||
darknet
|
84
darknet/darknet.pro
Normal file
84
darknet/darknet.pro
Normal file
@ -0,0 +1,84 @@
|
||||
VERSION = 0.1.0
|
||||
TEMPLATE = app
|
||||
include($$PWD/../general.pri)
|
||||
|
||||
CONFIG += console
|
||||
CONFIG -= app_bundle
|
||||
CONFIG -= qt
|
||||
|
||||
DEFINES += GPU
|
||||
DEFINES += CUDNN
|
||||
DEFINES += OPENCV
|
||||
DEFINES += OPENMP
|
||||
|
||||
INCLUDEPATH += \
|
||||
$$PWD/../include \
|
||||
$$PWD/../src
|
||||
|
||||
HEADERS += \
|
||||
$$files($$PWD/../src/*.h)
|
||||
|
||||
SOURCES += \
|
||||
$$files($$PWD/../src/*.c) \
|
||||
$$files($$PWD/../examples/*.c)
|
||||
|
||||
win32 {
|
||||
INCLUDEPATH += $$PWD/../windows
|
||||
HEADERS += $$files($$PWD/../windows/*.h)
|
||||
SOURCES += $$files($$PWD/../windows/*.c)
|
||||
}
|
||||
|
||||
|
||||
win32 {
|
||||
DEFINES += HAVE_STRUCT_TIMESPEC
|
||||
include($$PWD/../ThirdParty/Pthreads.pri)
|
||||
} else {
|
||||
LIBS += -lpthread
|
||||
}
|
||||
contains(DEFINES, GPU): include($$PWD/../ThirdParty/CUDA.pri)
|
||||
contains(DEFINES, GPU): contains(DEFINES, CUDNN): LIBS += -lcudnn
|
||||
contains(DEFINES, OPENCV): include($$PWD/../ThirdParty/OpenCV.pri)
|
||||
contains(DEFINES, OPENMP) {
|
||||
win32 {
|
||||
QMAKE_CFLAGS += /openmp
|
||||
} else {
|
||||
QMAKE_CFLAGS += -fopenmp
|
||||
LIBS += -fopenmp
|
||||
}
|
||||
}
|
||||
win32: LIBS += -lWs2_32
|
||||
|
||||
|
||||
contains(DEFINES, GPU) {
|
||||
CUDA_SOURCES += $$files($$PWD/../src/*.cu)
|
||||
NVCC_OPTIONS += \
|
||||
-gencode arch=compute_30,code=sm_30 \
|
||||
-gencode arch=compute_35,code=sm_35 \
|
||||
-gencode arch=compute_50,code=[sm_50,compute_50] \
|
||||
-gencode arch=compute_52,code=[sm_52,compute_52] \
|
||||
$$join(DEFINES, " -D", "-D", "") \
|
||||
$$join(INCLUDEPATH, "\" -I\"", "-I\"", "\"") \
|
||||
$$LIBS
|
||||
|
||||
CONFIG(debug, debug|release): NVCC_OPTIONS += -D_DEBUG
|
||||
|
||||
win32 {
|
||||
CONFIG(debug, debug|release): NVCC_OPTIONS += -Xcompiler /MDd
|
||||
else: NVCC_OPTIONS += -Xcompiler /MD
|
||||
}
|
||||
|
||||
cuda_compiler.input = CUDA_SOURCES
|
||||
cuda_compiler.output = $$DEST_ROOT/darknet/$$CONFIGURATION_NAME/${QMAKE_FILE_BASE}_cuda$$BUILD_OBJECT_FILE_SUFFIX
|
||||
cuda_compiler.commands = nvcc $$NVCC_OPTIONS -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
|
||||
cuda_compiler.dependency_type = TYPE_C
|
||||
QMAKE_EXTRA_COMPILERS += cuda_compiler
|
||||
}
|
||||
|
||||
|
||||
# install
|
||||
target.path = $$INSTALL_PREFIX/bin
|
||||
install_data.path = $$INSTALL_PREFIX/bin
|
||||
install_data.files = $$PWD/../data
|
||||
install_cfg.path = $$INSTALL_PREFIX/bin
|
||||
install_cfg.files = $$PWD/../cfg
|
||||
INSTALLS += target install_data install_cfg
|
@ -1,6 +1,10 @@
|
||||
#include "darknet.h"
|
||||
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
|
||||
void demo_art(char *cfgfile, char *weightfile, int cam_index)
|
||||
{
|
||||
|
@ -1,6 +1,10 @@
|
||||
#include "darknet.h"
|
||||
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
#include <assert.h>
|
||||
|
||||
void extend_data_truth(data *d, int n, float val)
|
||||
|
@ -1,6 +1,15 @@
|
||||
#include "darknet.h"
|
||||
|
||||
#ifdef WIN32
|
||||
#include <windows.h>
|
||||
#endif
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
#ifdef WIN32
|
||||
#include <gettimeofday.h>
|
||||
#endif
|
||||
#include <assert.h>
|
||||
|
||||
float *get_regression_values(char **labels, int n)
|
||||
|
@ -9,13 +9,13 @@ void train_dice(char *cfgfile, char *weightfile)
|
||||
char *base = basecfg(cfgfile);
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
printf("%s\n", base);
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
||||
int imgs = 1024;
|
||||
int i = *net.seen/imgs;
|
||||
int i = *net->seen/imgs;
|
||||
char **labels = dice_labels;
|
||||
list *plist = get_paths("data/dice/dice.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -24,16 +24,16 @@ void train_dice(char *cfgfile, char *weightfile)
|
||||
while(1){
|
||||
++i;
|
||||
time=clock();
|
||||
data train = load_data_old(paths, imgs, plist->size, labels, 6, net.w, net.h);
|
||||
data train = load_data_old(paths, imgs, plist->size, labels, 6, net->w, net->h);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %ld images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
printf("%d: %f, %f avg, %lf seconds, %ld images\n", i, loss, avg_loss, sec(clock()-time), *net->seen);
|
||||
free_data(train);
|
||||
if((i % 100) == 0) net.learning_rate *= .1;
|
||||
if((i % 100) == 0) net->learning_rate *= .1;
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i);
|
||||
@ -44,9 +44,9 @@ void train_dice(char *cfgfile, char *weightfile)
|
||||
|
||||
void validate_dice(char *filename, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(filename);
|
||||
network *net = parse_network_cfg(filename);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
srand(time(0));
|
||||
|
||||
@ -57,7 +57,7 @@ void validate_dice(char *filename, char *weightfile)
|
||||
int m = plist->size;
|
||||
free_list(plist);
|
||||
|
||||
data val = load_data_old(paths, m, 0, labels, 6, net.w, net.h);
|
||||
data val = load_data_old(paths, m, 0, labels, 6, net->w, net->h);
|
||||
float *acc = network_accuracies(net, val, 2);
|
||||
printf("Validation Accuracy: %f, %d images\n", acc[0], m);
|
||||
free_data(val);
|
||||
@ -65,11 +65,11 @@ void validate_dice(char *filename, char *weightfile)
|
||||
|
||||
void test_dice(char *cfgfile, char *weightfile, char *filename)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
set_batch_network(net, 1);
|
||||
srand(2222222);
|
||||
int i = 0;
|
||||
char **names = dice_labels;
|
||||
@ -86,7 +86,7 @@ void test_dice(char *cfgfile, char *weightfile, char *filename)
|
||||
if(!input) return;
|
||||
strtok(input, "\n");
|
||||
}
|
||||
image im = load_image_color(input, net.w, net.h);
|
||||
image im = load_image_color(input, net->w, net->h);
|
||||
float *X = im.data;
|
||||
float *predictions = network_predict(net, X);
|
||||
top_predictions(net, 6, indexes);
|
||||
|
@ -2,11 +2,25 @@
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#ifdef WIN32
|
||||
#include <windows.h>
|
||||
#else
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#ifdef WIN32
|
||||
#define STDIN_FILENO 0
|
||||
#endif
|
||||
|
||||
#ifdef WIN32
|
||||
#define popen _popen
|
||||
#define pclose _pclose
|
||||
#define sleep Sleep
|
||||
#endif
|
||||
|
||||
int inverted = 1;
|
||||
int noi = 1;
|
||||
static const int nind = 10;
|
||||
#define nind 10
|
||||
int legal_go(float *b, float *ko, int p, int r, int c);
|
||||
int check_ko(float *x, float *ko);
|
||||
|
||||
|
@ -1,5 +1,15 @@
|
||||
#include "darknet.h"
|
||||
#ifdef WIN32
|
||||
#include <windows.h>
|
||||
#endif
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
#ifdef WIN32
|
||||
#include <gettimeofday.h>
|
||||
#endif
|
||||
#include <assert.h>
|
||||
|
||||
void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
||||
|
@ -4,7 +4,7 @@
|
||||
image get_image_from_stream(CvCapture *cap);
|
||||
image ipl_to_image(IplImage* src);
|
||||
|
||||
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters);
|
||||
void reconstruct_picture(network *net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters);
|
||||
|
||||
|
||||
typedef struct {
|
||||
@ -12,17 +12,17 @@ typedef struct {
|
||||
float *y;
|
||||
} float_pair;
|
||||
|
||||
float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int steps)
|
||||
float_pair get_rnn_vid_data(network *net, char **files, int n, int batch, int steps)
|
||||
{
|
||||
int b;
|
||||
assert(net.batch == steps + 1);
|
||||
assert(net->batch == steps + 1);
|
||||
image out_im = get_network_image(net);
|
||||
int output_size = out_im.w*out_im.h*out_im.c;
|
||||
printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
|
||||
float *feats = calloc(net.batch*batch*output_size, sizeof(float));
|
||||
float *feats = calloc(net->batch*batch*output_size, sizeof(float));
|
||||
for(b = 0; b < batch; ++b){
|
||||
int input_size = net.w*net.h*net.c;
|
||||
float *input = calloc(input_size*net.batch, sizeof(float));
|
||||
int input_size = net->w*net->h*net->c;
|
||||
float *input = calloc(input_size*net->batch, sizeof(float));
|
||||
char *filename = files[rand()%n];
|
||||
CvCapture *cap = cvCaptureFromFile(filename);
|
||||
int frames = cvGetCaptureProperty(cap, CV_CAP_PROP_FRAME_COUNT);
|
||||
@ -37,11 +37,11 @@ float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int ste
|
||||
cvSetCaptureProperty(cap, CV_CAP_PROP_POS_FRAMES, index);
|
||||
|
||||
int i;
|
||||
for(i = 0; i < net.batch; ++i){
|
||||
for(i = 0; i < net->batch; ++i){
|
||||
IplImage* src = cvQueryFrame(cap);
|
||||
image im = ipl_to_image(src);
|
||||
rgbgr_image(im);
|
||||
image re = resize_image(im, net.w, net.h);
|
||||
image re = resize_image(im, net->w, net->h);
|
||||
//show_image(re, "loaded");
|
||||
//cvWaitKey(10);
|
||||
memcpy(input + i*input_size, re.data, input_size*sizeof(float));
|
||||
@ -52,7 +52,7 @@ float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int ste
|
||||
|
||||
free(input);
|
||||
|
||||
for(i = 0; i < net.batch; ++i){
|
||||
for(i = 0; i < net->batch; ++i){
|
||||
memcpy(feats + (b + i*batch)*output_size, output + i*output_size, output_size*sizeof(float));
|
||||
}
|
||||
|
||||
@ -76,32 +76,32 @@ void train_vid_rnn(char *cfgfile, char *weightfile)
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = net.batch*net.subdivisions;
|
||||
int i = *net.seen/imgs;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
||||
int imgs = net->batch*net->subdivisions;
|
||||
int i = *net->seen/imgs;
|
||||
|
||||
list *plist = get_paths(train_videos);
|
||||
int N = plist->size;
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
clock_t time;
|
||||
int steps = net.time_steps;
|
||||
int batch = net.batch / net.time_steps;
|
||||
int steps = net->time_steps;
|
||||
int batch = net->batch / net->time_steps;
|
||||
|
||||
network extractor = parse_network_cfg("cfg/extractor.cfg");
|
||||
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
|
||||
network *extractor = parse_network_cfg("cfg/extractor.cfg");
|
||||
load_weights(extractor, "/home/pjreddie/trained/yolo-coco.conv");
|
||||
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
while(get_current_batch(net) < net->max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
float_pair p = get_rnn_vid_data(extractor, paths, N, batch, steps);
|
||||
|
||||
copy_cpu(net.inputs*net.batch, p.x, 1, net.input, 1);
|
||||
copy_cpu(net.truths*net.batch, p.y, 1, net.truth, 1);
|
||||
float loss = train_network_datum(net) / (net.batch);
|
||||
copy_cpu(net->inputs*net->batch, p.x, 1, net->input, 1);
|
||||
copy_cpu(net->truths*net->batch, p.y, 1, net->truth, 1);
|
||||
float loss = train_network_datum(net) / (net->batch);
|
||||
|
||||
|
||||
free(p.x);
|
||||
@ -126,16 +126,16 @@ void train_vid_rnn(char *cfgfile, char *weightfile)
|
||||
}
|
||||
|
||||
|
||||
image save_reconstruction(network net, image *init, float *feat, char *name, int i)
|
||||
image save_reconstruction(network *net, image *init, float *feat, char *name, int i)
|
||||
{
|
||||
image recon;
|
||||
if (init) {
|
||||
recon = copy_image(*init);
|
||||
} else {
|
||||
recon = make_random_image(net.w, net.h, 3);
|
||||
recon = make_random_image(net->w, net->h, 3);
|
||||
}
|
||||
|
||||
image update = make_image(net.w, net.h, 3);
|
||||
image update = make_image(net->w, net->h, 3);
|
||||
reconstruct_picture(net, feat, recon, update, .01, .9, .1, 2, 50);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s%d", name, i);
|
||||
@ -146,15 +146,15 @@ image save_reconstruction(network net, image *init, float *feat, char *name, int
|
||||
|
||||
void generate_vid_rnn(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network extractor = parse_network_cfg("cfg/extractor.recon.cfg");
|
||||
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
|
||||
network *extractor = parse_network_cfg("cfg/extractor.recon.cfg");
|
||||
load_weights(extractor, "/home/pjreddie/trained/yolo-coco.conv");
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
set_batch_network(&extractor, 1);
|
||||
set_batch_network(&net, 1);
|
||||
set_batch_network(extractor, 1);
|
||||
set_batch_network(net, 1);
|
||||
|
||||
int i;
|
||||
CvCapture *cap = cvCaptureFromFile("/extra/vid/ILSVRC2015/Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4");
|
||||
@ -163,7 +163,7 @@ void generate_vid_rnn(char *cfgfile, char *weightfile)
|
||||
image last;
|
||||
for(i = 0; i < 25; ++i){
|
||||
image im = get_image_from_stream(cap);
|
||||
image re = resize_image(im, extractor.w, extractor.h);
|
||||
image re = resize_image(im, extractor->w, extractor->h);
|
||||
feat = network_predict(extractor, re.data);
|
||||
if(i > 0){
|
||||
printf("%f %f\n", mean_array(feat, 14*14*512), variance_array(feat, 14*14*512));
|
||||
|
@ -1,5 +1,15 @@
|
||||
#include "darknet.h"
|
||||
#ifdef WIN32
|
||||
#include <windows.h>
|
||||
#endif
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
#ifdef WIN32
|
||||
#include <gettimeofday.h>
|
||||
#endif
|
||||
#include <assert.h>
|
||||
|
||||
void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int display)
|
||||
|
@ -1,5 +1,9 @@
|
||||
#include "darknet.h"
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
|
||||
void train_swag(char *cfgfile, char *weightfile)
|
||||
{
|
||||
@ -9,16 +13,16 @@ void train_swag(char *cfgfile, char *weightfile)
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = net.batch*net.subdivisions;
|
||||
int i = *net.seen/imgs;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
||||
int imgs = net->batch*net->subdivisions;
|
||||
int i = *net->seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
layer l = net->layers[net->n - 1];
|
||||
|
||||
int side = l.side;
|
||||
int classes = l.classes;
|
||||
@ -29,8 +33,8 @@ void train_swag(char *cfgfile, char *weightfile)
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.w = net->w;
|
||||
args.h = net->h;
|
||||
args.paths = paths;
|
||||
args.n = imgs;
|
||||
args.m = plist->size;
|
||||
@ -43,7 +47,7 @@ void train_swag(char *cfgfile, char *weightfile)
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
clock_t time;
|
||||
//while(i*imgs < N*120){
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
while(get_current_batch(net) < net->max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
|
@ -44,13 +44,13 @@ void train_voxel(char *cfgfile, char *weightfile)
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = net.batch*net.subdivisions;
|
||||
int i = *net.seen/imgs;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
||||
int imgs = net->batch*net->subdivisions;
|
||||
int i = *net->seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
|
||||
@ -59,8 +59,8 @@ void train_voxel(char *cfgfile, char *weightfile)
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.w = net->w;
|
||||
args.h = net->h;
|
||||
args.scale = 4;
|
||||
args.paths = paths;
|
||||
args.n = imgs;
|
||||
@ -71,7 +71,7 @@ void train_voxel(char *cfgfile, char *weightfile)
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
clock_t time;
|
||||
//while(i*imgs < N*120){
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
while(get_current_batch(net) < net->max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
@ -105,11 +105,11 @@ void train_voxel(char *cfgfile, char *weightfile)
|
||||
|
||||
void test_voxel(char *cfgfile, char *weightfile, char *filename)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
set_batch_network(net, 1);
|
||||
srand(2222222);
|
||||
|
||||
clock_t time;
|
||||
@ -126,7 +126,7 @@ void test_voxel(char *cfgfile, char *weightfile, char *filename)
|
||||
strtok(input, "\n");
|
||||
}
|
||||
image im = load_image_color(input, 0, 0);
|
||||
resize_network(&net, im.w, im.h);
|
||||
resize_network(net, im.w, im.h);
|
||||
printf("%d %d\n", im.w, im.h);
|
||||
|
||||
float *X = im.data;
|
||||
|
@ -7,12 +7,12 @@ void train_writing(char *cfgfile, char *weightfile)
|
||||
float avg_loss = -1;
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = net.batch*net.subdivisions;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
||||
int imgs = net->batch*net->subdivisions;
|
||||
list *plist = get_paths("figures.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
clock_t time;
|
||||
@ -23,8 +23,8 @@ void train_writing(char *cfgfile, char *weightfile)
|
||||
data train, buffer;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.w = net->w;
|
||||
args.h = net->h;
|
||||
args.out_w = out.w;
|
||||
args.out_h = out.h;
|
||||
args.paths = paths;
|
||||
@ -34,8 +34,8 @@ void train_writing(char *cfgfile, char *weightfile)
|
||||
args.type = WRITING_DATA;
|
||||
|
||||
pthread_t load_thread = load_data_in_thread(args);
|
||||
int epoch = (*net.seen)/N;
|
||||
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
|
||||
int epoch = (*net->seen)/N;
|
||||
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
@ -63,15 +63,15 @@ void train_writing(char *cfgfile, char *weightfile)
|
||||
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
|
||||
free_data(train);
|
||||
if(get_current_batch(net)%100 == 0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net));
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
if(*net->seen/N > epoch){
|
||||
epoch = *net->seen/N;
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
||||
save_weights(net, buff);
|
||||
@ -81,11 +81,11 @@ void train_writing(char *cfgfile, char *weightfile)
|
||||
|
||||
void test_writing(char *cfgfile, char *weightfile, char *filename)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
set_batch_network(net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
char buff[256];
|
||||
@ -102,7 +102,7 @@ void test_writing(char *cfgfile, char *weightfile, char *filename)
|
||||
}
|
||||
|
||||
image im = load_image_color(input, 0, 0);
|
||||
resize_network(&net, im.w, im.h);
|
||||
resize_network(net, im.w, im.h);
|
||||
printf("%d %d %d\n", im.h, im.w, im.c);
|
||||
float *X = im.data;
|
||||
time=clock();
|
||||
|
156
general.pri
Normal file
156
general.pri
Normal file
@ -0,0 +1,156 @@
|
||||
isEmpty(SOLUTION_DIR) {
|
||||
SOLUTION_DIR = $$PWD
|
||||
# warning("Variable \"SOLUTION_DIR\" is not defined, so the default value \"$$SOLUTION_DIR\" (the directory of \"general.pri\") will be used.")
|
||||
}
|
||||
|
||||
|
||||
isEmpty(SOLUTION_NAME) {
|
||||
SOLUTION_NAME = $$basename(PWD)
|
||||
# warning("Variable \"SOLUTION_NAME\" is not defined, so the default value \"$$SOLUTION_NAME\" (the directory name of \"general.pri\") will be used.")
|
||||
}
|
||||
|
||||
|
||||
isEmpty(PROJECT_DIR) {
|
||||
PROJECT_DIR = $$_PRO_FILE_PWD_
|
||||
}
|
||||
|
||||
|
||||
isEmpty(PROJECT_NAME) {
|
||||
PROJECT_NAME = $$basename(_PRO_FILE_PWD_)
|
||||
}
|
||||
|
||||
|
||||
isEmpty(VERSION) {
|
||||
VERSION = 0.0.0
|
||||
warning("Variable \"VERSION\" is not defined, so the default value \"0.0.0\" will be used.")
|
||||
}
|
||||
|
||||
|
||||
isEmpty(CONFIGURATION_NAME) {
|
||||
CONFIG(debug, debug|release): CONFIGURATION_NAME = debug
|
||||
else: CONFIGURATION_NAME = release
|
||||
}
|
||||
|
||||
|
||||
isEmpty(COMPILER_NAME) {
|
||||
COMPILER_NAME = $$(COMPILER_NAME)
|
||||
isEmpty(COMPILER_NAME) {
|
||||
win32: COMPILER_NAME = msvc
|
||||
else: COMPILER_NAME = gcc
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
isEmpty(ARCHITECTURE_NAME) {
|
||||
ARCHITECTURE_NAME = $$(ARCHITECTURE_NAME)
|
||||
isEmpty(ARCHITECTURE_NAME) {
|
||||
ARCHITECTURE_NAME = x64
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
isEmpty(TEMP_DIR) {
|
||||
TEMP_DIR = $$(TEMP_DIR)
|
||||
isEmpty(TEMP_DIR) {
|
||||
win32: TEMP_DIR = E:/temp
|
||||
else: TEMP_DIR = $$(HOME)/temp
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
isEmpty(DEST_ROOT) {
|
||||
DEST_ROOT = $$(DEST_ROOT)
|
||||
isEmpty(DEST_ROOT) {
|
||||
DEST_ROOT = $$TEMP_DIR/$$SOLUTION_NAME/build/$$SOLUTION_NAME-$$VERSION-$$COMPILER_NAME-$$ARCHITECTURE_NAME
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
isEmpty(INSTALL_PREFIX) {
|
||||
INSTALL_PREFIX = $$(INSTALL_PREFIX)
|
||||
isEmpty(INSTALL_PREFIX) {
|
||||
INSTALL_PREFIX = $$TEMP_DIR/$$SOLUTION_NAME/install/$$SOLUTION_NAME-$$VERSION-$$COMPILER_NAME-$$ARCHITECTURE_NAME
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
isEmpty(LIBS_ROOT) {
|
||||
LIBS_ROOT = $$(LIBS_ROOT)
|
||||
isEmpty(LIBS_ROOT) {
|
||||
LIBS_ROOT = $$clean_path($$SOLUTION_DIR/../$$SOLUTION_NAME"_"ThirdParty)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
isEmpty(OTHERFILES_ROOT) {
|
||||
OTHERFILES_ROOT = $$(OTHERFILES_ROOT)
|
||||
isEmpty(OTHERFILES_ROOT) {
|
||||
OTHERFILES_ROOT = $$clean_path($$SOLUTION_DIR/../$$SOLUTION_NAME"_"OtherFiles)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
win32 {
|
||||
BUILD_DEPEND_LIB_DIR_NAME = lib
|
||||
BUILD_DEPEND_LIB_FILE_SUFFIX_SHARED = "."lib
|
||||
BUILD_DEPEND_LIB_FILE_SUFFIX_STATIC = "."lib
|
||||
BUILD_DEPEND_LIB_FILE_SUFFIX = $$BUILD_DEPEND_LIB_FILE_SUFFIX_SHARED
|
||||
INSTALL_DEPEND_LIB_DIR_NAME = bin
|
||||
BUILD_OBJECT_FILE_SUFFIX = "."obj
|
||||
INSTALL_DEPEND_LIB_FILE_SUFFIX = "."dll
|
||||
|
||||
deployqt = windeployqt
|
||||
|
||||
EXECUTABLE_FILE_SUFFIX = "."exe
|
||||
EXECUTABLE_SCRIPT_FILE_SUFFIX = "."bat
|
||||
} else {
|
||||
BUILD_DEPEND_LIB_DIR_NAME = lib
|
||||
BUILD_DEPEND_LIB_FILE_SUFFIX_SHARED = "."so
|
||||
BUILD_DEPEND_LIB_FILE_SUFFIX_STATIC = "."a
|
||||
BUILD_DEPEND_LIB_FILE_SUFFIX = $$BUILD_DEPEND_LIB_FILE_SUFFIX_SHARED
|
||||
BUILD_OBJECT_FILE_SUFFIX = "."o
|
||||
INSTALL_DEPEND_LIB_DIR_NAME = lib
|
||||
INSTALL_DEPEND_LIB_FILE_SUFFIX = "."so
|
||||
|
||||
deployqt = linuxdeployqt
|
||||
|
||||
EXECUTABLE_FILE_SUFFIX =
|
||||
EXECUTABLE_SCRIPT_FILE_SUFFIX = "."sh
|
||||
}
|
||||
|
||||
|
||||
defineReplace(getInstallDeployQtCommand) {
|
||||
TARGET_ = $$1
|
||||
win32 {
|
||||
return($$deployqt --dir $$INSTALL_PREFIX --libdir $$INSTALL_PREFIX/lib/Qt --plugindir $$INSTALL_PREFIX/plugins $$INSTALL_PREFIX/bin/$$TARGET_$$EXECUTABLE_FILE_SUFFIX)
|
||||
} else {
|
||||
LIBS_ = $$2
|
||||
DEPEND_LIB_PATHS =
|
||||
for (lib_dir, LIBS_) {
|
||||
lib_dir = $$replace(lib_dir, -L, "")
|
||||
exists($$lib_dir/*) {
|
||||
DEPEND_LIB_PATHS += $$lib_dir
|
||||
}
|
||||
}
|
||||
setup_env = $$join(DEPEND_LIB_PATHS, ":", "export LD_LIBRARY_PATH=\"", ":$LD_LIBRARY_PATH\"")
|
||||
|
||||
return($$setup_env; $$deployqt $$INSTALL_PREFIX/bin/$$TARGET_$$EXECUTABLE_FILE_SUFFIX)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
isEmpty(DEFINED_TARGET) {
|
||||
CONFIG(debug, debug|release): TARGET = $$PROJECT_NAME"d"
|
||||
else: TARGET = $$PROJECT_NAME
|
||||
|
||||
DEFINED_TARGET = 1
|
||||
}
|
||||
isEmpty(DEFINED_DESTDIR) {
|
||||
equals(TEMPLATE, "lib") {
|
||||
DESTDIR = $$DEST_ROOT/$$PROJECT_NAME/lib
|
||||
} else: equals(TEMPLATE, "app") {
|
||||
DESTDIR = $$DEST_ROOT/$$PROJECT_NAME/bin
|
||||
}
|
||||
|
||||
DEFINED_DESTDIR = 1
|
||||
}
|
@ -14,11 +14,11 @@ void train_compare(char *cfgfile, char *weightfile)
|
||||
char *base = basecfg(cfgfile);
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
printf("%s\n", base);
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
network *net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
||||
int imgs = 1024;
|
||||
list *plist = get_paths("data/compare.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -30,8 +30,8 @@ void train_compare(char *cfgfile, char *weightfile)
|
||||
data buffer;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.w = net->w;
|
||||
args.h = net->h;
|
||||
args.paths = paths;
|
||||
args.classes = 20;
|
||||
args.n = imgs;
|
||||
@ -40,7 +40,7 @@ void train_compare(char *cfgfile, char *weightfile)
|
||||
args.type = COMPARE_DATA;
|
||||
|
||||
load_thread = load_data_in_thread(args);
|
||||
int epoch = *net.seen/N;
|
||||
int epoch = *net->seen/N;
|
||||
int i = 0;
|
||||
while(1){
|
||||
++i;
|
||||
@ -54,20 +54,20 @@ void train_compare(char *cfgfile, char *weightfile)
|
||||
float loss = train_network(net, train);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%.3f: %f, %f avg, %lf seconds, %ld images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
printf("%.3f: %f, %f avg, %lf seconds, %ld images\n", (float)*net->seen/N, loss, avg_loss, sec(clock()-time), *net->seen);
|
||||
free_data(train);
|
||||
if(i%100 == 0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d_minor_%d.weights",backup_directory,base, epoch, i);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
if(*net->seen/N > epoch){
|
||||
epoch = *net->seen/N;
|
||||
i = 0;
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
||||
save_weights(net, buff);
|
||||
if(epoch%22 == 0) net.learning_rate *= .1;
|
||||
if(epoch%22 == 0) net->learning_rate *= .1;
|
||||
}
|
||||
}
|
||||
pthread_join(load_thread, 0);
|
||||
@ -81,9 +81,9 @@ void train_compare(char *cfgfile, char *weightfile)
|
||||
void validate_compare(char *filename, char *weightfile)
|
||||
{
|
||||
int i = 0;
|
||||
network net = parse_network_cfg(filename);
|
||||
network *net = parse_network_cfg(filename);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
srand(time(0));
|
||||
|
||||
@ -102,8 +102,8 @@ void validate_compare(char *filename, char *weightfile)
|
||||
data val, buffer;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.w = net->w;
|
||||
args.h = net->h;
|
||||
args.paths = paths;
|
||||
args.classes = 20;
|
||||
args.n = num;
|
||||
@ -146,7 +146,7 @@ void validate_compare(char *filename, char *weightfile)
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
network net;
|
||||
network *net;
|
||||
char *filename;
|
||||
int class;
|
||||
int classes;
|
||||
@ -171,12 +171,12 @@ int bbox_comparator(const void *a, const void *b)
|
||||
++total_compares;
|
||||
sortable_bbox box1 = *(sortable_bbox*)a;
|
||||
sortable_bbox box2 = *(sortable_bbox*)b;
|
||||
network net = box1.net;
|
||||
network *net = box1.net;
|
||||
int class = box1.class;
|
||||
|
||||
image im1 = load_image_color(box1.filename, net.w, net.h);
|
||||
image im2 = load_image_color(box2.filename, net.w, net.h);
|
||||
float *X = calloc(net.w*net.h*net.c, sizeof(float));
|
||||
image im1 = load_image_color(box1.filename, net->w, net->h);
|
||||
image im2 = load_image_color(box2.filename, net->w, net->h);
|
||||
float *X = calloc(net->w*net->h*net->c, sizeof(float));
|
||||
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float));
|
||||
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float));
|
||||
float *predictions = network_predict(net, X);
|
||||
@ -201,11 +201,11 @@ void bbox_update(sortable_bbox *a, sortable_bbox *b, int class, int result)
|
||||
b->elos[class] += k*(SB - EB);
|
||||
}
|
||||
|
||||
void bbox_fight(network net, sortable_bbox *a, sortable_bbox *b, int classes, int class)
|
||||
void bbox_fight(network *net, sortable_bbox *a, sortable_bbox *b, int classes, int class)
|
||||
{
|
||||
image im1 = load_image_color(a->filename, net.w, net.h);
|
||||
image im2 = load_image_color(b->filename, net.w, net.h);
|
||||
float *X = calloc(net.w*net.h*net.c, sizeof(float));
|
||||
image im1 = load_image_color(a->filename, net->w, net->h);
|
||||
image im2 = load_image_color(b->filename, net->w, net->h);
|
||||
float *X = calloc(net->w*net->h*net->c, sizeof(float));
|
||||
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float));
|
||||
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float));
|
||||
float *predictions = network_predict(net, X);
|
||||
@ -227,12 +227,12 @@ void bbox_fight(network net, sortable_bbox *a, sortable_bbox *b, int classes, in
|
||||
void SortMaster3000(char *filename, char *weightfile)
|
||||
{
|
||||
int i = 0;
|
||||
network net = parse_network_cfg(filename);
|
||||
network *net = parse_network_cfg(filename);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
srand(time(0));
|
||||
set_batch_network(&net, 1);
|
||||
set_batch_network(net, 1);
|
||||
|
||||
list *plist = get_paths("data/compare.sort.list");
|
||||
//list *plist = get_paths("data/compare.val.old");
|
||||
@ -259,12 +259,12 @@ void BattleRoyaleWithCheese(char *filename, char *weightfile)
|
||||
{
|
||||
int classes = 20;
|
||||
int i,j;
|
||||
network net = parse_network_cfg(filename);
|
||||
network *net = parse_network_cfg(filename);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
load_weights(net, weightfile);
|
||||
}
|
||||
srand(time(0));
|
||||
set_batch_network(&net, 1);
|
||||
set_batch_network(net, 1);
|
||||
|
||||
list *plist = get_paths("data/compare.sort.list");
|
||||
//list *plist = get_paths("data/compare.small.list");
|
||||
|
@ -27,7 +27,7 @@ void cudnn_convolutional_setup(layer *l);
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam);
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network net);
|
||||
void forward_convolutional_layer(convolutional_layer layer, network net);
|
||||
void update_convolutional_layer(convolutional_layer layer, update_args a);
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_weights);
|
||||
void binarize_weights(float *weights, int n, int size, float *binary);
|
||||
|
@ -98,7 +98,7 @@ void forward_cost_layer(cost_layer l, network net)
|
||||
l.cost[0] = sum_array(l.output, l.batch*l.inputs);
|
||||
}
|
||||
|
||||
void backward_cost_layer(const cost_layer l, network net)
|
||||
void backward_cost_layer(cost_layer l, network net)
|
||||
{
|
||||
axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, net.delta, 1);
|
||||
}
|
||||
|
@ -8,8 +8,8 @@ typedef layer cost_layer;
|
||||
COST_TYPE get_cost_type(char *s);
|
||||
char *get_cost_string(COST_TYPE a);
|
||||
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE type, float scale);
|
||||
void forward_cost_layer(const cost_layer l, network net);
|
||||
void backward_cost_layer(const cost_layer l, network net);
|
||||
void forward_cost_layer(cost_layer l, network net);
|
||||
void backward_cost_layer(cost_layer l, network net);
|
||||
void resize_cost_layer(cost_layer *l, int inputs);
|
||||
|
||||
#ifdef GPU
|
||||
|
@ -7,7 +7,11 @@
|
||||
#include "box.h"
|
||||
#include "image.h"
|
||||
#include "demo.h"
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
|
||||
#define DEMO 1
|
||||
|
||||
|
22
src/utils.c
22
src/utils.c
@ -3,11 +3,22 @@
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <assert.h>
|
||||
#ifdef WIN32
|
||||
#include <windows.h>
|
||||
#else
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
#include <float.h>
|
||||
#include <limits.h>
|
||||
#include <time.h>
|
||||
#ifdef WIN32
|
||||
#include <time.h>
|
||||
#else
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
#ifdef WIN32
|
||||
#include <gettimeofday.h>
|
||||
#endif
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
@ -78,7 +89,7 @@ void sorta_shuffle(void *arr, size_t n, size_t size, size_t sections)
|
||||
size_t start = n*i/sections;
|
||||
size_t end = n*(i+1)/sections;
|
||||
size_t num = end-start;
|
||||
shuffle(arr+(start*size), num, size);
|
||||
shuffle((char*)arr+(start*size), num, size);
|
||||
}
|
||||
}
|
||||
|
||||
@ -88,9 +99,9 @@ void shuffle(void *arr, size_t n, size_t size)
|
||||
void *swp = calloc(1, size);
|
||||
for(i = 0; i < n-1; ++i){
|
||||
size_t j = i + rand()/(RAND_MAX / (n-i)+1);
|
||||
memcpy(swp, arr+(j*size), size);
|
||||
memcpy(arr+(j*size), arr+(i*size), size);
|
||||
memcpy(arr+(i*size), swp, size);
|
||||
memcpy(swp, (char*)arr+(j*size), size);
|
||||
memcpy((char*)arr+(j*size), (char*)arr+(i*size), size);
|
||||
memcpy((char*)arr+(i*size), swp, size);
|
||||
}
|
||||
}
|
||||
|
||||
@ -363,6 +374,7 @@ char *fgetl(FILE *fp)
|
||||
return line;
|
||||
}
|
||||
|
||||
#ifndef WIN32
|
||||
int read_int(int fd)
|
||||
{
|
||||
int n = 0;
|
||||
@ -418,7 +430,7 @@ void write_all(int fd, char *buffer, size_t bytes)
|
||||
n += next;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
char *copy_string(char *s)
|
||||
{
|
||||
|
@ -20,12 +20,14 @@ void sorta_shuffle(void *arr, size_t n, size_t size, size_t sections);
|
||||
void free_ptrs(void **ptrs, int n);
|
||||
int alphanum_to_int(char c);
|
||||
char int_to_alphanum(int i);
|
||||
#ifndef WIN32
|
||||
int read_int(int fd);
|
||||
void write_int(int fd, int n);
|
||||
void read_all(int fd, char *buffer, size_t bytes);
|
||||
void write_all(int fd, char *buffer, size_t bytes);
|
||||
int read_all_fail(int fd, char *buffer, size_t bytes);
|
||||
int write_all_fail(int fd, char *buffer, size_t bytes);
|
||||
#endif
|
||||
void find_replace(char *str, char *orig, char *rep, char *output);
|
||||
void malloc_error();
|
||||
void file_error(char *s);
|
||||
|
49
windows/gettimeofday.c
Normal file
49
windows/gettimeofday.c
Normal file
@ -0,0 +1,49 @@
|
||||
#include "gettimeofday.h"
|
||||
|
||||
|
||||
int gettimeofday(struct timeval *tv, struct timezone *tz)
|
||||
{
|
||||
FILETIME ft;
|
||||
unsigned __int64 tmpres = 0;
|
||||
static int tzflag;
|
||||
|
||||
if (NULL != tv)
|
||||
{
|
||||
GetSystemTimeAsFileTime(&ft);
|
||||
|
||||
tmpres |= ft.dwHighDateTime;
|
||||
tmpres <<= 32;
|
||||
tmpres |= ft.dwLowDateTime;
|
||||
|
||||
// converting file time to unix epoch
|
||||
tmpres -= DELTA_EPOCH_IN_MICROSECS;
|
||||
tmpres /= 10; // convert into microseconds
|
||||
tv->tv_sec = (long)(tmpres / 1000000UL);
|
||||
tv->tv_usec = (long)(tmpres % 1000000UL);
|
||||
}
|
||||
|
||||
if (NULL != tz)
|
||||
{
|
||||
if (!tzflag)
|
||||
{
|
||||
_tzset();
|
||||
tzflag++;
|
||||
}
|
||||
tz->tz_minuteswest = _timezone / 60;
|
||||
tz->tz_dsttime = _daylight;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int timersub(struct timeval *a, struct timeval *b, struct timeval *result)
|
||||
{
|
||||
(result)->tv_sec = (a)->tv_sec - (b)->tv_sec;
|
||||
(result)->tv_usec = (a)->tv_usec - (b)->tv_usec;
|
||||
if ((result)->tv_usec < 0) {
|
||||
--(result)->tv_sec;
|
||||
(result)->tv_usec += 1000000;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
26
windows/gettimeofday.h
Normal file
26
windows/gettimeofday.h
Normal file
@ -0,0 +1,26 @@
|
||||
#ifndef GETTIMEOFDAY_H
|
||||
#define GETTIMEOFDAY_H
|
||||
|
||||
#include <time.h>
|
||||
#include <windows.h>
|
||||
|
||||
#if defined(_MSC_VER) || defined(_MSC_EXTENSIONS)
|
||||
#define DELTA_EPOCH_IN_MICROSECS 11644473600000000Ui64
|
||||
#else
|
||||
#define DELTA_EPOCH_IN_MICROSECS 11644473600000000ULL
|
||||
#endif
|
||||
|
||||
|
||||
struct timezone
|
||||
{
|
||||
int tz_minuteswest; // minutes W of Greenwich
|
||||
int tz_dsttime; // type of dst correction
|
||||
};
|
||||
|
||||
int gettimeofday(struct timeval *tv, struct timezone *tz);
|
||||
|
||||
// never worry about timersub type activies again -- from GLIBC and upcased.
|
||||
int timersub(struct timeval *a, struct timeval *b, struct timeval *result);
|
||||
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user