mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
C wrappers
This commit is contained in:
@ -361,7 +361,8 @@ int main(int argc, char *argv[])
|
||||
auto current_image = det_image;
|
||||
consumed = true;
|
||||
while (current_image.use_count() > 0) {
|
||||
auto result = detector.detect_resized(*current_image, frame_size, thresh, false); // true
|
||||
auto result = detector.detect_resized(*current_image, frame_size.width, frame_size.height,
|
||||
thresh, false); // true
|
||||
++fps_det_counter;
|
||||
std::unique_lock<std::mutex> lock(mtx);
|
||||
thread_result_vec = result;
|
||||
|
@ -22,6 +22,13 @@ extern "C" {
|
||||
|
||||
#define FRAMES 3
|
||||
|
||||
void check_cuda(cudaError_t status) {
|
||||
if (status != cudaSuccess) {
|
||||
const char *s = cudaGetErrorString(status);
|
||||
printf("CUDA Error Prev: %s\n", s);
|
||||
}
|
||||
}
|
||||
|
||||
struct detector_gpu_t {
|
||||
float **probs;
|
||||
box *boxes;
|
||||
@ -38,14 +45,15 @@ YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_file
|
||||
wait_stream = 0;
|
||||
int old_gpu_index;
|
||||
#ifdef GPU
|
||||
cudaGetDevice(&old_gpu_index);
|
||||
check_cuda( cudaGetDevice(&old_gpu_index) );
|
||||
#endif
|
||||
|
||||
detector_gpu_ptr = std::make_shared<detector_gpu_t>();
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
|
||||
#ifdef GPU
|
||||
cudaSetDevice(gpu_id);
|
||||
check_cuda( cudaSetDevice(gpu_id) );
|
||||
printf(" Used GPU %d \n", gpu_id);
|
||||
#endif
|
||||
network &net = detector_gpu.net;
|
||||
net.gpu_index = gpu_id;
|
||||
@ -76,14 +84,14 @@ YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_file
|
||||
for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
|
||||
|
||||
#ifdef GPU
|
||||
cudaSetDevice(old_gpu_index);
|
||||
check_cuda( cudaSetDevice(old_gpu_index) );
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
YOLODLL_API Detector::~Detector()
|
||||
{
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
|
||||
|
||||
free(detector_gpu.track_id);
|
||||
@ -110,11 +118,11 @@ YOLODLL_API Detector::~Detector()
|
||||
}
|
||||
|
||||
YOLODLL_API int Detector::get_net_width() const {
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
return detector_gpu.net.w;
|
||||
}
|
||||
YOLODLL_API int Detector::get_net_height() const {
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
return detector_gpu.net.h;
|
||||
}
|
||||
|
||||
@ -172,7 +180,7 @@ YOLODLL_API void Detector::free_image(image_t m)
|
||||
|
||||
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
|
||||
{
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
network &net = detector_gpu.net;
|
||||
int old_gpu_index;
|
||||
#ifdef GPU
|
||||
@ -254,7 +262,7 @@ YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool
|
||||
YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history,
|
||||
int const frames_story, int const max_dist)
|
||||
{
|
||||
detector_gpu_t &det_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
|
||||
bool prev_track_id_present = false;
|
||||
for (auto &i : prev_bbox_vec_deque)
|
||||
|
@ -1,15 +1,4 @@
|
||||
#pragma once
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <deque>
|
||||
#include <algorithm>
|
||||
|
||||
#ifdef OPENCV
|
||||
#include <opencv2/opencv.hpp> // C++
|
||||
#include "opencv2/highgui/highgui_c.h" // C
|
||||
#include "opencv2/imgproc/imgproc_c.h" // C
|
||||
#endif // OPENCV
|
||||
|
||||
#ifdef YOLODLL_EXPORTS
|
||||
#if defined(_MSC_VER)
|
||||
#define YOLODLL_API __declspec(dllexport)
|
||||
@ -39,6 +28,17 @@ struct image_t {
|
||||
float *data; // pointer to the image data
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <deque>
|
||||
#include <algorithm>
|
||||
|
||||
#ifdef OPENCV
|
||||
#include <opencv2/opencv.hpp> // C++
|
||||
#include "opencv2/highgui/highgui_c.h" // C
|
||||
#include "opencv2/imgproc/imgproc_c.h" // C
|
||||
#endif // OPENCV
|
||||
|
||||
class Detector {
|
||||
std::shared_ptr<void> detector_gpu_ptr;
|
||||
@ -61,23 +61,23 @@ public:
|
||||
YOLODLL_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true,
|
||||
int const frames_story = 10, int const max_dist = 150);
|
||||
|
||||
std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
|
||||
{
|
||||
if (img.data == NULL)
|
||||
throw std::runtime_error("Image is empty");
|
||||
auto detection_boxes = detect(img, thresh, use_mean);
|
||||
float wk = (float)init_w / img.w, hk = (float)init_h / img.h;
|
||||
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
|
||||
return detection_boxes;
|
||||
}
|
||||
|
||||
#ifdef OPENCV
|
||||
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
|
||||
{
|
||||
if(mat.data == NULL)
|
||||
throw std::runtime_error("Image is empty");
|
||||
auto image_ptr = mat_to_image_resize(mat);
|
||||
return detect_resized(*image_ptr, mat.size(), thresh, use_mean);
|
||||
}
|
||||
|
||||
std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false)
|
||||
{
|
||||
if (img.data == NULL)
|
||||
throw std::runtime_error("Image is empty");
|
||||
auto detection_boxes = detect(img, thresh, use_mean);
|
||||
float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h;
|
||||
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
|
||||
return detection_boxes;
|
||||
return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean);
|
||||
}
|
||||
|
||||
std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
|
||||
@ -588,3 +588,54 @@ public:
|
||||
}
|
||||
};
|
||||
#endif // OPENCV
|
||||
|
||||
//extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
/*
|
||||
// C - wrappers
|
||||
YOLODLL_API void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id);
|
||||
YOLODLL_API void delete_detector();
|
||||
YOLODLL_API bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size);
|
||||
YOLODLL_API bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size);
|
||||
YOLODLL_API bbox_t* detect(image_t img, int *result_size);
|
||||
YOLODLL_API image_t load_img(char *image_filename);
|
||||
YOLODLL_API void free_img(image_t m);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
||||
static std::shared_ptr<void> c_detector_ptr;
|
||||
static std::vector<bbox_t> c_result_vec;
|
||||
|
||||
void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) {
|
||||
c_detector_ptr = std::make_shared<YOLODLL_API Detector>(cfg_filename, weight_filename, gpu_id);
|
||||
}
|
||||
|
||||
void delete_detector() { c_detector_ptr.reset(); }
|
||||
|
||||
bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) {
|
||||
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect(img, thresh, use_mean);
|
||||
*result_size = c_result_vec.size();
|
||||
return c_result_vec.data();
|
||||
}
|
||||
|
||||
bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) {
|
||||
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean);
|
||||
*result_size = c_result_vec.size();
|
||||
return c_result_vec.data();
|
||||
}
|
||||
|
||||
bbox_t* detect(image_t img, int *result_size) {
|
||||
return detect_custom(img, 0.24, true, result_size);
|
||||
}
|
||||
|
||||
image_t load_img(char *image_filename) {
|
||||
return static_cast<Detector*>(c_detector_ptr.get())->load_image(image_filename);
|
||||
}
|
||||
void free_img(image_t m) {
|
||||
static_cast<Detector*>(c_detector_ptr.get())->free_image(m);
|
||||
}
|
||||
|
||||
#endif // __cplusplus
|
||||
*/
|
||||
|
Reference in New Issue
Block a user