Fixed bug in Tensor Cores V100 (1. Desc in Batch norm, 2. Manually selected algo).

Also fixed time measure on Linux for multi-threading.
This commit is contained in:
AlexeyAB
2018-04-15 01:51:21 +03:00
parent 16cfff811f
commit eb9c88ef73
6 changed files with 74 additions and 26 deletions

View File

@ -54,8 +54,8 @@ layer make_batchnorm_layer(int batch, int w, int h, int c)
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
#ifdef CUDNN #ifdef CUDNN
cudnnCreateTensorDescriptor(&layer.normTensorDesc); cudnnCreateTensorDescriptor(&layer.normTensorDesc);
cudnnCreateTensorDescriptor(&layer.dstTensorDesc); cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
cudnnSetTensor4dDescriptor(layer.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w); cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1); cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
#endif #endif
#endif #endif
@ -189,9 +189,9 @@ void forward_batchnorm_layer_gpu(layer l, network_state state)
CUDNN_BATCHNORM_SPATIAL, CUDNN_BATCHNORM_SPATIAL,
&one, &one,
&zero, &zero,
l.dstTensorDesc, l.normDstTensorDesc,
l.x_gpu, l.x_gpu,
l.dstTensorDesc, l.normDstTensorDesc,
l.output_gpu, l.output_gpu,
l.normTensorDesc, l.normTensorDesc,
l.scales_gpu, l.scales_gpu,
@ -242,11 +242,11 @@ void backward_batchnorm_layer_gpu(layer l, network_state state)
&zero, &zero,
&one, &one,
&one, &one,
l.dstTensorDesc, l.normDstTensorDesc,
l.x_gpu, l.x_gpu,
l.dstTensorDesc, l.normDstTensorDesc,
l.delta_gpu, l.delta_gpu,
l.dstTensorDesc, l.normDstTensorDesc,
l.x_norm_gpu, l.x_norm_gpu,
l.normTensorDesc, l.normTensorDesc,
l.scales_gpu, l.scales_gpu,

View File

@ -177,6 +177,7 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
// batch norm // batch norm
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
#if(CUDNN_MAJOR >= 6) #if(CUDNN_MAJOR >= 6)
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0 cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
#else #else
@ -190,6 +191,7 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE; backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
printf(" CUDNN-slow ");
} }
cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
@ -216,6 +218,38 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
backward_filter, backward_filter,
0, 0,
&l->bf_algo); &l->bf_algo);
if (data_type == CUDNN_DATA_HALF)
{
// HALF-16 if(data_type == CUDNN_DATA_HALF)
l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
// FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
//l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
//l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
//l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
int fw = 0, bd = 0, bf = 0;
if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1;
//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n");
if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2;
//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n");
if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1;
//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 \n");
if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2;
//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n");
if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1;
//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 \n");
if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2;
//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n");
if (fw == 2 && bd == 2 && bf == 2) printf("TF ");
else if (fw >= 1 && bd >= 1 && bf >= 1) printf("TH ");
}
} }
#endif #endif
#endif #endif
@ -344,6 +378,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
} }
#ifdef CUDNN #ifdef CUDNN
cudnnCreateTensorDescriptor(&l.normDstTensorDesc);
cudnnCreateTensorDescriptor(&l.normTensorDesc); cudnnCreateTensorDescriptor(&l.normTensorDesc);
cudnnCreateTensorDescriptor(&l.srcTensorDesc); cudnnCreateTensorDescriptor(&l.srcTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc); cudnnCreateTensorDescriptor(&l.dstTensorDesc);

View File

@ -91,7 +91,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
args.small_object = net.small_object; args.small_object = net.small_object;
args.d = &buffer; args.d = &buffer;
args.type = DETECTION_DATA; args.type = DETECTION_DATA;
args.threads = 64; // 8 args.threads = 16; // 64
args.angle = net.angle; args.angle = net.angle;
args.exposure = net.exposure; args.exposure = net.exposure;
@ -99,6 +99,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
args.hue = net.hue; args.hue = net.hue;
#ifdef OPENCV #ifdef OPENCV
args.threads = 7;
IplImage* img = NULL; IplImage* img = NULL;
float max_img_loss = 5; float max_img_loss = 5;
int number_of_lines = 100; int number_of_lines = 100;
@ -108,7 +109,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
#endif //OPENCV #endif //OPENCV
pthread_t load_thread = load_data(args); pthread_t load_thread = load_data(args);
clock_t time; double time;
int count = 0; int count = 0;
//while(i*imgs < N*120){ //while(i*imgs < N*120){
while(get_current_batch(net) < net.max_batches){ while(get_current_batch(net) < net.max_batches){
@ -131,7 +132,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
} }
net = nets[0]; net = nets[0];
} }
time=clock(); time=what_time_is_it_now();
pthread_join(load_thread, 0); pthread_join(load_thread, 0);
train = buffer; train = buffer;
load_thread = load_data(args); load_thread = load_data(args);
@ -153,9 +154,9 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
save_image(im, "truth11"); save_image(im, "truth11");
*/ */
printf("Loaded: %lf seconds\n", sec(clock()-time)); printf("Loaded: %lf seconds\n", (what_time_is_it_now()-time));
time=clock(); time=what_time_is_it_now();
float loss = 0; float loss = 0;
#ifdef GPU #ifdef GPU
if(ngpus == 1){ if(ngpus == 1){
@ -170,7 +171,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
avg_loss = avg_loss*.9 + loss*.1; avg_loss = avg_loss*.9 + loss*.1;
i = get_current_batch(net); i = get_current_batch(net);
printf("\n %d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); printf("\n %d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), (what_time_is_it_now()-time), i*imgs);
#ifdef OPENCV #ifdef OPENCV
if(!dont_show) if(!dont_show)
@ -291,11 +292,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *out
int *map = 0; int *map = 0;
if (mapf) map = read_map(mapf); if (mapf) map = read_map(mapf);
network net = parse_network_cfg_custom(cfgfile, 1); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1
if (weightfile) { if (weightfile) {
load_weights(&net, weightfile); load_weights(&net, weightfile);
} }
set_batch_network(&net, 1); //set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0)); srand(time(0));
@ -414,11 +415,11 @@ void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *out
void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
{ {
network net = parse_network_cfg_custom(cfgfile, 1); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1
if (weightfile) { if (weightfile) {
load_weights(&net, weightfile); load_weights(&net, weightfile);
} }
set_batch_network(&net, 1); //set_batch_network(&net, 1);
fuse_conv_batchnorm(net); fuse_conv_batchnorm(net);
srand(time(0)); srand(time(0));
@ -522,11 +523,11 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
int *map = 0; int *map = 0;
if (mapf) map = read_map(mapf); if (mapf) map = read_map(mapf);
network net = parse_network_cfg_custom(cfgfile, 1); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1
if (weightfile) { if (weightfile) {
load_weights(&net, weightfile); load_weights(&net, weightfile);
} }
set_batch_network(&net, 1); //set_batch_network(&net, 1);
fuse_conv_batchnorm(net); fuse_conv_batchnorm(net);
srand(time(0)); srand(time(0));
@ -1020,14 +1021,14 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
char **names = get_labels(name_list); char **names = get_labels(name_list);
image **alphabet = load_alphabet(); image **alphabet = load_alphabet();
network net = parse_network_cfg_custom(cfgfile, 1); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1
if(weightfile){ if(weightfile){
load_weights(&net, weightfile); load_weights(&net, weightfile);
} }
set_batch_network(&net, 1); //set_batch_network(&net, 1);
fuse_conv_batchnorm(net); fuse_conv_batchnorm(net);
srand(2222222); srand(2222222);
clock_t time; double time;
char buff[256]; char buff[256];
char *input = buff; char *input = buff;
int j; int j;
@ -1054,10 +1055,10 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
//for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
float *X = sized.data; float *X = sized.data;
time=clock(); time= what_time_is_it_now();
network_predict(net, X); network_predict(net, X);
//network_predict_image(&net, im); //network_predict_image(&net, im);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time));
//get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0); //get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
// if (nms) do_nms_sort_v2(boxes, probs, l.w*l.h*l.n, l.classes, nms); // if (nms) do_nms_sort_v2(boxes, probs, l.w*l.h*l.n, l.classes, nms);
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);

View File

@ -281,7 +281,7 @@ struct layer{
#ifdef CUDNN #ifdef CUDNN
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc; cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc; cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
cudnnTensorDescriptor_t normTensorDesc; cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc;
cudnnFilterDescriptor_t weightDesc; cudnnFilterDescriptor_t weightDesc;
cudnnFilterDescriptor_t dweightDesc; cudnnFilterDescriptor_t dweightDesc;
cudnnConvolutionDescriptor_t convDesc; cudnnConvolutionDescriptor_t convDesc;

View File

@ -7,13 +7,24 @@
#include <limits.h> #include <limits.h>
#ifdef WIN32 #ifdef WIN32
#include "unistd.h" #include "unistd.h"
#include "gettimeofday.h"
#else #else
#include <unistd.h> #include <unistd.h>
#include <sys/time.h>
#endif #endif
#include "utils.h" #include "utils.h"
#pragma warning(disable: 4996) #pragma warning(disable: 4996)
double what_time_is_it_now()
{
struct timeval time;
if (gettimeofday(&time, NULL)) {
return 0;
}
return (double)time.tv_sec + (double)time.tv_usec * .000001;
}
int *read_map(char *filename) int *read_map(char *filename)
{ {
int n = 0; int n = 0;

View File

@ -25,6 +25,7 @@
#endif #endif
#endif #endif
double what_time_is_it_now();
int *read_map(char *filename); int *read_map(char *filename);
void shuffle(void *arr, size_t n, size_t size); void shuffle(void *arr, size_t n, size_t size);
void sorta_shuffle(void *arr, size_t n, size_t size, size_t sections); void sorta_shuffle(void *arr, size_t n, size_t size, size_t sections);