mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
hope i didn't break anything
This commit is contained in:
parent
881d6ee9b6
commit
ec3d050a76
2
Makefile
2
Makefile
@ -3,7 +3,7 @@ CUDNN=0
|
||||
OPENCV=0
|
||||
DEBUG=0
|
||||
|
||||
ARCH= --gpu-architecture=compute_20 --gpu-code=compute_20
|
||||
ARCH= --gpu-architecture=compute_52 --gpu-code=compute_52
|
||||
|
||||
VPATH=./src/
|
||||
EXEC=darknet
|
||||
|
@ -14,7 +14,6 @@ power=4
|
||||
max_batches=500000
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=16
|
||||
size=3
|
||||
stride=1
|
||||
@ -26,7 +25,6 @@ size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
@ -38,7 +36,6 @@ size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=1
|
||||
@ -50,7 +47,6 @@ size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
@ -62,7 +58,6 @@ size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
@ -74,7 +69,6 @@ size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
@ -86,7 +80,6 @@ size=2
|
||||
stride=2
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
|
9
cfg/imagenet1k.dataset
Normal file
9
cfg/imagenet1k.dataset
Normal file
@ -0,0 +1,9 @@
|
||||
classes=1000
|
||||
labels = data/inet.labels.list
|
||||
names = data/shortnames.txt
|
||||
train = /data/imagenet/imagenet1k.train.list
|
||||
valid = /data/imagenet/imagenet1k.valid.list
|
||||
top=5
|
||||
test = /Users/pjreddie/Documents/sites/selfie/paths.list
|
||||
backup = /home/pjreddie/backup/
|
||||
|
@ -38,7 +38,7 @@ list *read_data_cfg(char *filename)
|
||||
return options;
|
||||
}
|
||||
|
||||
void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
|
||||
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear)
|
||||
{
|
||||
data_seed = time(0);
|
||||
srand(time(0));
|
||||
@ -49,6 +49,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
if(clear) *net.seen = 0;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = net.batch;
|
||||
|
||||
@ -116,7 +117,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile)
|
||||
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if(*net.seen%100 == 0){
|
||||
if(get_current_batch(net)%100 == 0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.backup",backup_directory,base);
|
||||
save_weights(net, buff);
|
||||
@ -378,8 +379,8 @@ void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
|
||||
//cvWaitKey(0);
|
||||
float *pred = network_predict(net, crop.data);
|
||||
|
||||
if(resized.data != im.data) free_image(resized);
|
||||
free_image(im);
|
||||
free_image(resized);
|
||||
free_image(crop);
|
||||
top_k(pred, classes, topk, indexes);
|
||||
|
||||
@ -441,7 +442,7 @@ void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
|
||||
flip_image(r);
|
||||
p = network_predict(net, r.data);
|
||||
axpy_cpu(classes, 1, p, 1, pred, 1);
|
||||
free_image(r);
|
||||
if(r.data != im.data) free_image(r);
|
||||
}
|
||||
free_image(im);
|
||||
top_k(pred, classes, topk, indexes);
|
||||
@ -501,6 +502,46 @@ void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *fi
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void label_classifier(char *datacfg, char *filename, char *weightfile)
|
||||
{
|
||||
int i;
|
||||
network net = parse_network_cfg(filename);
|
||||
set_batch_network(&net, 1);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
srand(time(0));
|
||||
|
||||
list *options = read_data_cfg(datacfg);
|
||||
|
||||
char *label_list = option_find_str(options, "names", "data/labels.list");
|
||||
char *test_list = option_find_str(options, "test", "data/train.list");
|
||||
int classes = option_find_int(options, "classes", 2);
|
||||
|
||||
char **labels = get_labels(label_list);
|
||||
list *plist = get_paths(test_list);
|
||||
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int m = plist->size;
|
||||
free_list(plist);
|
||||
|
||||
for(i = 0; i < m; ++i){
|
||||
image im = load_image_color(paths[i], 0, 0);
|
||||
image resized = resize_min(im, net.w);
|
||||
image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
|
||||
float *pred = network_predict(net, crop.data);
|
||||
|
||||
if(resized.data != im.data) free_image(resized);
|
||||
free_image(im);
|
||||
free_image(crop);
|
||||
int ind = max_index(pred, classes);
|
||||
|
||||
printf("%s\n", labels[ind]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
|
||||
{
|
||||
int curr = 0;
|
||||
@ -649,6 +690,7 @@ void run_classifier(int argc, char **argv)
|
||||
}
|
||||
|
||||
int cam_index = find_int_arg(argc, argv, "-c", 0);
|
||||
int clear = find_arg(argc, argv, "-clear");
|
||||
char *data = argv[3];
|
||||
char *cfg = argv[4];
|
||||
char *weights = (argc > 5) ? argv[5] : 0;
|
||||
@ -656,9 +698,10 @@ void run_classifier(int argc, char **argv)
|
||||
char *layer_s = (argc > 7) ? argv[7]: 0;
|
||||
int layer = layer_s ? atoi(layer_s) : -1;
|
||||
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
|
||||
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
|
||||
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
|
||||
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
|
||||
else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
|
||||
|
@ -161,6 +161,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
l.filter_updates_gpu);
|
||||
|
||||
if(state.delta){
|
||||
if(l.binary || l.xnor) swap_binary(&l);
|
||||
cudnnConvolutionBackwardData(cudnn_handle(),
|
||||
&one,
|
||||
l.filterDesc,
|
||||
@ -174,6 +175,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
&one,
|
||||
l.dsrcTensorDesc,
|
||||
state.delta);
|
||||
if(l.binary || l.xnor) swap_binary(&l);
|
||||
}
|
||||
|
||||
#else
|
||||
|
@ -88,8 +88,8 @@ image get_convolutional_delta(convolutional_layer l)
|
||||
return float_to_image(w,h,c,l.delta);
|
||||
}
|
||||
|
||||
#ifdef CUDNN
|
||||
size_t get_workspace_size(layer l){
|
||||
#ifdef CUDNN
|
||||
size_t most = 0;
|
||||
size_t s = 0;
|
||||
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
|
||||
@ -117,8 +117,10 @@ size_t get_workspace_size(layer l){
|
||||
&s);
|
||||
if (s > most) most = s;
|
||||
return most;
|
||||
}
|
||||
#else
|
||||
return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
|
||||
#endif
|
||||
}
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
|
||||
{
|
||||
@ -154,8 +156,6 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||
l.inputs = l.w * l.h * l.c;
|
||||
|
||||
l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
l.workspace_size = out_h*out_w*size*size*c*sizeof(float);
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
@ -255,10 +255,9 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
|
||||
0,
|
||||
&l.bf_algo);
|
||||
#endif
|
||||
#endif
|
||||
l.workspace_size = get_workspace_size(l);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
@ -315,8 +314,6 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
l->outputs = l->out_h * l->out_w * l->out_c;
|
||||
l->inputs = l->w * l->h * l->c;
|
||||
|
||||
l->col_image = realloc(l->col_image,
|
||||
out_h*out_w*l->size*l->size*l->c*sizeof(float));
|
||||
l->output = realloc(l->output,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
l->delta = realloc(l->delta,
|
||||
@ -328,7 +325,43 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
|
||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
||||
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
||||
#ifdef CUDNN
|
||||
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
|
||||
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
|
||||
cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
|
||||
|
||||
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
|
||||
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
|
||||
cudnnSetFilter4dDescriptor(l->filterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
|
||||
int padding = l->pad ? l->size/2 : 0;
|
||||
cudnnSetConvolution2dDescriptor(l->convDesc, padding, padding, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
|
||||
cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
|
||||
l->srcTensorDesc,
|
||||
l->filterDesc,
|
||||
l->convDesc,
|
||||
l->dstTensorDesc,
|
||||
CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
|
||||
0,
|
||||
&l->fw_algo);
|
||||
cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
|
||||
l->filterDesc,
|
||||
l->ddstTensorDesc,
|
||||
l->convDesc,
|
||||
l->dsrcTensorDesc,
|
||||
CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
|
||||
0,
|
||||
&l->bd_algo);
|
||||
cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
|
||||
l->srcTensorDesc,
|
||||
l->ddstTensorDesc,
|
||||
l->convDesc,
|
||||
l->dfilterDesc,
|
||||
CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
|
||||
0,
|
||||
&l->bf_algo);
|
||||
#endif
|
||||
#endif
|
||||
l->workspace_size = get_workspace_size(*l);
|
||||
}
|
||||
|
||||
void add_bias(float *output, float *biases, int batch, int n, int size)
|
||||
@ -386,7 +419,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
int n = out_h*out_w;
|
||||
|
||||
char *a = l.cfilters;
|
||||
float *b = l.col_image;
|
||||
float *b = state.workspace;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
@ -407,7 +440,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
int n = out_h*out_w;
|
||||
|
||||
float *a = l.filters;
|
||||
float *b = l.col_image;
|
||||
float *b = state.workspace;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
@ -439,7 +472,7 @@ void backward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *a = l.delta + i*m*k;
|
||||
float *b = l.col_image;
|
||||
float *b = state.workspace;
|
||||
float *c = l.filter_updates;
|
||||
|
||||
float *im = state.input+i*l.c*l.h*l.w;
|
||||
@ -451,11 +484,11 @@ void backward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
if(state.delta){
|
||||
a = l.filters;
|
||||
b = l.delta + i*m*k;
|
||||
c = l.col_image;
|
||||
c = state.workspace;
|
||||
|
||||
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
|
||||
|
||||
col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
|
||||
col2im_cpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -270,6 +270,8 @@ int main(int argc, char **argv)
|
||||
run_dice(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "writing")){
|
||||
run_writing(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "3d")){
|
||||
composite_3d(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "test")){
|
||||
test_resize(argv[2]);
|
||||
} else if (0 == strcmp(argv[1], "captcha")){
|
||||
|
22
src/data.c
22
src/data.c
@ -271,7 +271,7 @@ void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int
|
||||
free(boxes);
|
||||
}
|
||||
|
||||
void fill_truth_detection(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
|
||||
void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
|
||||
{
|
||||
char *labelpath = find_replace(path, "images", "labels");
|
||||
labelpath = find_replace(labelpath, "JPEGImages", "labels");
|
||||
@ -283,7 +283,7 @@ void fill_truth_detection(char *path, float *truth, int classes, int flip, float
|
||||
box_label *boxes = read_boxes(labelpath, &count);
|
||||
randomize_boxes(boxes, count);
|
||||
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
|
||||
if(count > 17) count = 17;
|
||||
if(count > num_boxes) count = num_boxes;
|
||||
float x,y,w,h;
|
||||
int id;
|
||||
int i;
|
||||
@ -297,11 +297,11 @@ void fill_truth_detection(char *path, float *truth, int classes, int flip, float
|
||||
|
||||
if (w < .01 || h < .01) continue;
|
||||
|
||||
truth[i*5] = id;
|
||||
truth[i*5+2] = x;
|
||||
truth[i*5+3] = y;
|
||||
truth[i*5+4] = w;
|
||||
truth[i*5+5] = h;
|
||||
truth[i*5+0] = id;
|
||||
truth[i*5+1] = x;
|
||||
truth[i*5+2] = y;
|
||||
truth[i*5+3] = w;
|
||||
truth[i*5+4] = h;
|
||||
}
|
||||
free(boxes);
|
||||
}
|
||||
@ -601,7 +601,7 @@ data load_data_swag(char **paths, int n, int classes, float jitter)
|
||||
return d;
|
||||
}
|
||||
|
||||
data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter)
|
||||
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter)
|
||||
{
|
||||
char **random_paths = get_random_paths(paths, n, m);
|
||||
int i;
|
||||
@ -643,7 +643,7 @@ data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, in
|
||||
if(flip) flip_image(sized);
|
||||
d.X.vals[i] = sized.data;
|
||||
|
||||
fill_truth_detection(random_paths[i], d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy);
|
||||
fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy);
|
||||
|
||||
free_image(orig);
|
||||
free_image(cropped);
|
||||
@ -669,12 +669,12 @@ void *load_thread(void *ptr)
|
||||
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
|
||||
} else if (a.type == STUDY_DATA){
|
||||
*a.d = load_data_study(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size);
|
||||
} else if (a.type == DETECTION_DATA){
|
||||
*a.d = load_data_detection(a.n, a.num_boxes, a.paths, a.m, a.classes, a.w, a.h, a.background);
|
||||
} else if (a.type == WRITING_DATA){
|
||||
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
|
||||
} else if (a.type == REGION_DATA){
|
||||
*a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter);
|
||||
} else if (a.type == DETECTION_DATA){
|
||||
*a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter);
|
||||
} else if (a.type == SWAG_DATA){
|
||||
*a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter);
|
||||
} else if (a.type == COMPARE_DATA){
|
||||
|
@ -70,7 +70,7 @@ void print_letters(float *pred, int n);
|
||||
data load_data_captcha(char **paths, int n, int m, int k, int w, int h);
|
||||
data load_data_captcha_encode(char **paths, int n, int m, int w, int h);
|
||||
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h);
|
||||
data load_data_detection(int n, int boxes, char **paths, int m, int w, int h, int classes, float jitter);
|
||||
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter);
|
||||
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size);
|
||||
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
|
||||
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size);
|
||||
|
69
src/image.c
69
src/image.c
@ -491,6 +491,8 @@ void show_image_cv(image p, const char *name)
|
||||
int r = j + dy;
|
||||
int c = i + dx;
|
||||
float val = 0;
|
||||
r = constrain_int(r, 0, im.h-1);
|
||||
c = constrain_int(c, 0, im.w-1);
|
||||
if (r >= 0 && r < im.h && c >= 0 && c < im.w) {
|
||||
val = get_pixel(im, c, r, k);
|
||||
}
|
||||
@ -501,6 +503,73 @@ void show_image_cv(image p, const char *name)
|
||||
return cropped;
|
||||
}
|
||||
|
||||
int best_3d_shift_r(image a, image b, int min, int max)
|
||||
{
|
||||
if(min == max) return min;
|
||||
int mid = floor((min + max) / 2.);
|
||||
image c1 = crop_image(b, 0, mid, b.w, b.h);
|
||||
image c2 = crop_image(b, 0, mid+1, b.w, b.h);
|
||||
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10);
|
||||
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10);
|
||||
free_image(c1);
|
||||
free_image(c2);
|
||||
if(d1 < d2) return best_3d_shift_r(a, b, min, mid);
|
||||
else return best_3d_shift_r(a, b, mid+1, max);
|
||||
}
|
||||
|
||||
int best_3d_shift(image a, image b, int min, int max)
|
||||
{
|
||||
int i;
|
||||
int best = 0;
|
||||
float best_distance = FLT_MAX;
|
||||
for(i = min; i <= max; i += 2){
|
||||
image c = crop_image(b, 0, i, b.w, b.h);
|
||||
float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100);
|
||||
if(d < best_distance){
|
||||
best_distance = d;
|
||||
best = i;
|
||||
}
|
||||
printf("%d %f\n", i, d);
|
||||
free_image(c);
|
||||
}
|
||||
return best;
|
||||
}
|
||||
|
||||
void composite_3d(char *f1, char *f2, char *out)
|
||||
{
|
||||
if(!out) out = "out";
|
||||
image a = load_image(f1, 0,0,0);
|
||||
image b = load_image(f2, 0,0,0);
|
||||
int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100);
|
||||
|
||||
image c1 = crop_image(b, 10, shift, b.w, b.h);
|
||||
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100);
|
||||
image c2 = crop_image(b, -10, shift, b.w, b.h);
|
||||
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100);
|
||||
|
||||
if(d2 < d1){
|
||||
image swap = a;
|
||||
a = b;
|
||||
b = swap;
|
||||
shift = -shift;
|
||||
printf("swapped, %d\n", shift);
|
||||
}
|
||||
else{
|
||||
printf("%d\n", shift);
|
||||
}
|
||||
|
||||
image c = crop_image(b, 0, shift, a.w, a.h);
|
||||
int i;
|
||||
for(i = 0; i < c.w*c.h; ++i){
|
||||
c.data[i] = a.data[i];
|
||||
}
|
||||
#ifdef OPENCV
|
||||
save_image_jpg(c, out);
|
||||
#else
|
||||
save_image(c, out);
|
||||
#endif
|
||||
}
|
||||
|
||||
image resize_min(image im, int min)
|
||||
{
|
||||
int w = im.w;
|
||||
|
@ -44,6 +44,7 @@ void saturate_exposure_image(image im, float sat, float exposure);
|
||||
void hsv_to_rgb(image im);
|
||||
void rgbgr_image(image im);
|
||||
void constrain_image(image im);
|
||||
void composite_3d(char *f1, char *f2, char *out);
|
||||
|
||||
image grayscale_image(image im);
|
||||
image threshold_image(image im, float thresh);
|
||||
|
@ -50,6 +50,7 @@ struct layer{
|
||||
int h,w,c;
|
||||
int out_h, out_w, out_c;
|
||||
int n;
|
||||
int max_boxes;
|
||||
int groups;
|
||||
int size;
|
||||
int side;
|
||||
|
@ -137,6 +137,7 @@ network make_network(int n)
|
||||
|
||||
void forward_network(network net, network_state state)
|
||||
{
|
||||
state.workspace = net.workspace;
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
state.index = i;
|
||||
@ -400,6 +401,7 @@ int resize_network(network *net, int w, int h)
|
||||
net->w = w;
|
||||
net->h = h;
|
||||
int inputs = 0;
|
||||
size_t workspace_size = 0;
|
||||
//fprintf(stderr, "Resizing to %d x %d...", w, h);
|
||||
//fflush(stderr);
|
||||
for (i = 0; i < net->n; ++i){
|
||||
@ -419,12 +421,20 @@ int resize_network(network *net, int w, int h)
|
||||
}else{
|
||||
error("Cannot resize this type of layer");
|
||||
}
|
||||
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
||||
inputs = l.outputs;
|
||||
net->layers[i] = l;
|
||||
w = l.out_w;
|
||||
h = l.out_h;
|
||||
if(l.type == AVGPOOL) break;
|
||||
}
|
||||
#ifdef GPU
|
||||
cuda_free(net->workspace);
|
||||
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
|
||||
#else
|
||||
free(net->workspace);
|
||||
net->workspace = calloc(1, (workspace_size-1)/sizeof(float)+1);
|
||||
#endif
|
||||
//fprintf(stderr, " Done!\n");
|
||||
return 0;
|
||||
}
|
||||
|
@ -257,6 +257,7 @@ detection_layer parse_detection(list *options, size_params params)
|
||||
layer.softmax = option_find_int(options, "softmax", 0);
|
||||
layer.sqrt = option_find_int(options, "sqrt", 0);
|
||||
|
||||
layer.max_boxes = option_find_int_quiet(options, "max",30);
|
||||
layer.coord_scale = option_find_float(options, "coord_scale", 1);
|
||||
layer.forced = option_find_int(options, "forced", 0);
|
||||
layer.object_scale = option_find_float(options, "object_scale", 1);
|
||||
@ -600,8 +601,11 @@ network parse_network_cfg(char *filename)
|
||||
net.outputs = get_network_output_size(net);
|
||||
net.output = get_network_output(net);
|
||||
if(workspace_size){
|
||||
//printf("%ld\n", workspace_size);
|
||||
#ifdef GPU
|
||||
net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
|
||||
#else
|
||||
net.workspace = calloc(1, workspace_size);
|
||||
#endif
|
||||
}
|
||||
return net;
|
||||
|
100
src/rnn.c
100
src/rnn.c
@ -280,6 +280,104 @@ void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float t
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void test_tactic_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
|
||||
{
|
||||
char **tokens = 0;
|
||||
if(token_file){
|
||||
size_t n;
|
||||
tokens = read_tokens(token_file, &n);
|
||||
}
|
||||
|
||||
srand(rseed);
|
||||
char *base = basecfg(cfgfile);
|
||||
fprintf(stderr, "%s\n", base);
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
int inputs = get_network_input_size(net);
|
||||
|
||||
int i, j;
|
||||
for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
|
||||
int c = 0;
|
||||
int len = strlen(seed);
|
||||
float *input = calloc(inputs, sizeof(float));
|
||||
float *out;
|
||||
|
||||
while((c = getc(stdin)) != EOF){
|
||||
input[c] = 1;
|
||||
out = network_predict(net, input);
|
||||
input[c] = 0;
|
||||
}
|
||||
for(i = 0; i < num; ++i){
|
||||
for(j = 0; j < inputs; ++j){
|
||||
if (out[j] < .0001) out[j] = 0;
|
||||
}
|
||||
int next = sample_array(out, inputs);
|
||||
if(c == '.' && next == '\n') break;
|
||||
c = next;
|
||||
print_symbol(c, tokens);
|
||||
|
||||
input[c] = 1;
|
||||
out = network_predict(net, input);
|
||||
input[c] = 0;
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||
{
|
||||
char *base = basecfg(cfgfile);
|
||||
fprintf(stderr, "%s\n", base);
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
int inputs = get_network_input_size(net);
|
||||
|
||||
int count = 0;
|
||||
int words = 1;
|
||||
int c;
|
||||
int len = strlen(seed);
|
||||
float *input = calloc(inputs, sizeof(float));
|
||||
int i;
|
||||
for(i = 0; i < len; ++i){
|
||||
c = seed[i];
|
||||
input[(int)c] = 1;
|
||||
network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
}
|
||||
float sum = 0;
|
||||
c = getc(stdin);
|
||||
float log2 = log(2);
|
||||
int in = 0;
|
||||
while(c != EOF){
|
||||
int next = getc(stdin);
|
||||
if(next == EOF) break;
|
||||
if(next < 0 || next >= 255) error("Out of range character");
|
||||
|
||||
input[c] = 1;
|
||||
float *out = network_predict(net, input);
|
||||
input[c] = 0;
|
||||
|
||||
if(c == '.' && next == '\n') in = 0;
|
||||
if(!in) {
|
||||
if(c == '>' && next == '>'){
|
||||
in = 1;
|
||||
++words;
|
||||
}
|
||||
c = next;
|
||||
continue;
|
||||
}
|
||||
++count;
|
||||
sum += log(out[next])/log2;
|
||||
c = next;
|
||||
printf("%d %d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
|
||||
}
|
||||
}
|
||||
|
||||
void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||
{
|
||||
char *base = basecfg(cfgfile);
|
||||
@ -389,6 +487,8 @@ void run_char_rnn(int argc, char **argv)
|
||||
char *weights = (argc > 4) ? argv[4] : 0;
|
||||
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized);
|
||||
else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed);
|
||||
else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed);
|
||||
else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed);
|
||||
else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens);
|
||||
else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, seed, temp, rseed, tokens);
|
||||
}
|
||||
|
15
src/utils.c
15
src/utils.c
@ -424,6 +424,13 @@ float variance_array(float *a, int n)
|
||||
return variance;
|
||||
}
|
||||
|
||||
int constrain_int(int a, int min, int max)
|
||||
{
|
||||
if (a < min) return min;
|
||||
if (a > max) return max;
|
||||
return a;
|
||||
}
|
||||
|
||||
float constrain(float min, float max, float a)
|
||||
{
|
||||
if (a < min) return min;
|
||||
@ -431,6 +438,14 @@ float constrain(float min, float max, float a)
|
||||
return a;
|
||||
}
|
||||
|
||||
float dist_array(float *a, float *b, int n, int sub)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; i += sub) sum += pow(a[i]-b[i], 2);
|
||||
return sqrt(sum);
|
||||
}
|
||||
|
||||
float mse_array(float *a, int n)
|
||||
{
|
||||
int i;
|
||||
|
@ -36,6 +36,7 @@ void scale_array(float *a, int n, float s);
|
||||
void translate_array(float *a, int n, float s);
|
||||
int max_index(float *a, int n);
|
||||
float constrain(float min, float max, float a);
|
||||
int constrain_int(int a, int min, int max);
|
||||
float mse_array(float *a, int n);
|
||||
float rand_normal();
|
||||
size_t rand_size_t();
|
||||
@ -46,6 +47,7 @@ float mean_array(float *a, int n);
|
||||
void mean_arrays(float **a, int n, int els, float *avg);
|
||||
float variance_array(float *a, int n);
|
||||
float mag_array(float *a, int n);
|
||||
float dist_array(float *a, float *b, int n, int sub);
|
||||
float **one_hot_encode(float *a, int n, int k);
|
||||
float sec(clock_t clocks);
|
||||
int find_int_arg(int argc, char **argv, char *arg, int def);
|
||||
|
Loading…
x
Reference in New Issue
Block a user