mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
per image randomness in crop layer
This commit is contained in:
parent
47528e37cf
commit
f199fd3b64
@ -10,7 +10,7 @@ image get_crop_image(crop_layer layer)
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle)
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
|
||||
{
|
||||
fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c);
|
||||
crop_layer *layer = calloc(1, sizeof(crop_layer));
|
||||
@ -20,11 +20,14 @@ crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int
|
||||
layer->c = c;
|
||||
layer->flip = flip;
|
||||
layer->angle = angle;
|
||||
layer->saturation = saturation;
|
||||
layer->exposure = exposure;
|
||||
layer->crop_width = crop_width;
|
||||
layer->crop_height = crop_height;
|
||||
layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_gpu = cuda_make_array(layer->output, crop_width*crop_height*c*batch);
|
||||
layer->rand_gpu = cuda_make_array(0, layer->batch*8);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
|
@ -11,14 +11,17 @@ typedef struct {
|
||||
int crop_height;
|
||||
int flip;
|
||||
float angle;
|
||||
float saturation;
|
||||
float exposure;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
float *output_gpu;
|
||||
float *rand_gpu;
|
||||
#endif
|
||||
} crop_layer;
|
||||
|
||||
image get_crop_image(crop_layer layer);
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle);
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure);
|
||||
void forward_crop_layer(const crop_layer layer, network_state state);
|
||||
|
||||
#ifdef GPU
|
||||
|
@ -93,7 +93,7 @@ __device__ float billinear_interpolate_kernel(float *image, int w, int h, float
|
||||
return val;
|
||||
}
|
||||
|
||||
__global__ void levels_image_kernel(float *image, int batch, int w, int h, float saturation, float exposure, float translate, float scale)
|
||||
__global__ void levels_image_kernel(float *image, float *rand, int batch, int w, int h, int train, float saturation, float exposure, float translate, float scale)
|
||||
{
|
||||
int size = batch * w * h;
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
@ -102,22 +102,34 @@ __global__ void levels_image_kernel(float *image, int batch, int w, int h, float
|
||||
id /= w;
|
||||
int y = id % h;
|
||||
id /= h;
|
||||
float r0 = rand[8*id + 0];
|
||||
float r1 = rand[8*id + 1];
|
||||
float r2 = rand[8*id + 2];
|
||||
float r3 = rand[8*id + 3];
|
||||
|
||||
saturation = r0*(saturation - 1) + 1;
|
||||
saturation = (r1 > .5) ? 1./saturation : saturation;
|
||||
exposure = r2*(exposure - 1) + 1;
|
||||
exposure = (r3 > .5) ? 1./exposure : exposure;
|
||||
|
||||
size_t offset = id * h * w * 3;
|
||||
image += offset;
|
||||
float r = image[x + w*(y + h*2)];
|
||||
float g = image[x + w*(y + h*1)];
|
||||
float b = image[x + w*(y + h*0)];
|
||||
float3 rgb = make_float3(r,g,b);
|
||||
float3 hsv = rgb_to_hsv_kernel(rgb);
|
||||
hsv.y *= saturation;
|
||||
hsv.z *= exposure;
|
||||
rgb = hsv_to_rgb_kernel(hsv);
|
||||
if(train){
|
||||
float3 hsv = rgb_to_hsv_kernel(rgb);
|
||||
hsv.y *= saturation;
|
||||
hsv.z *= exposure;
|
||||
rgb = hsv_to_rgb_kernel(hsv);
|
||||
}
|
||||
image[x + w*(y + h*2)] = rgb.x*scale + translate;
|
||||
image[x + w*(y + h*1)] = rgb.y*scale + translate;
|
||||
image[x + w*(y + h*0)] = rgb.z*scale + translate;
|
||||
}
|
||||
|
||||
__global__ void forward_crop_layer_kernel(float *input, int size, int c, int h, int w, int crop_height, int crop_width, int dh, int dw, int flip, float angle, float *output)
|
||||
__global__ void forward_crop_layer_kernel(float *input, float *rand, int size, int c, int h, int w, int crop_height, int crop_width, int train, int flip, float angle, float *output)
|
||||
{
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(id >= size) return;
|
||||
@ -134,10 +146,26 @@ __global__ void forward_crop_layer_kernel(float *input, int size, int c, int h,
|
||||
id /= c;
|
||||
int b = id;
|
||||
|
||||
float r4 = rand[8*b + 4];
|
||||
float r5 = rand[8*b + 5];
|
||||
float r6 = rand[8*b + 6];
|
||||
float r7 = rand[8*b + 7];
|
||||
|
||||
float dw = (w - crop_width)*r4;
|
||||
float dh = (h - crop_height)*r5;
|
||||
flip = (flip && (r6 > .5));
|
||||
angle = 2*angle*r7 - angle;
|
||||
if(!train){
|
||||
dw = (w - crop_width)/2.;
|
||||
dh = (h - crop_height)/2.;
|
||||
flip = 0;
|
||||
angle = 0;
|
||||
}
|
||||
|
||||
input += w*h*c*b;
|
||||
|
||||
int x = (flip) ? w - dw - j - 1 : j + dw;
|
||||
int y = i + dh;
|
||||
float x = (flip) ? w - dw - j - 1 : j + dw;
|
||||
float y = i + dh;
|
||||
|
||||
float rx = cos(angle)*(x-cx) - sin(angle)*(y-cy) + cx;
|
||||
float ry = sin(angle)*(x-cx) + cos(angle)*(y-cy) + cy;
|
||||
@ -147,38 +175,21 @@ __global__ void forward_crop_layer_kernel(float *input, int size, int c, int h,
|
||||
|
||||
extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
|
||||
{
|
||||
int flip = (layer.flip && rand()%2);
|
||||
int dh = rand()%(layer.h - layer.crop_height + 1);
|
||||
int dw = rand()%(layer.w - layer.crop_width + 1);
|
||||
float radians = layer.angle*3.14159/180.;
|
||||
float angle = 2*radians*rand_uniform() - radians;
|
||||
cuda_random(layer.rand_gpu, layer.batch*8);
|
||||
|
||||
float saturation = rand_uniform() + 1;
|
||||
if(rand_uniform() > .5) saturation = 1./saturation;
|
||||
float exposure = rand_uniform() + 1;
|
||||
if(rand_uniform() > .5) exposure = 1./exposure;
|
||||
float radians = layer.angle*3.14159/180.;
|
||||
|
||||
float scale = 2;
|
||||
float translate = -1;
|
||||
|
||||
if(!state.train){
|
||||
angle = 0;
|
||||
flip = 0;
|
||||
dh = (layer.h - layer.crop_height)/2;
|
||||
dw = (layer.w - layer.crop_width)/2;
|
||||
saturation = 1;
|
||||
exposure = 1;
|
||||
}
|
||||
|
||||
int size = layer.batch * layer.w * layer.h;
|
||||
|
||||
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.batch, layer.w, layer.h, saturation, exposure, translate, scale);
|
||||
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, layer.batch, layer.w, layer.h, state.train, layer.saturation, layer.exposure, translate, scale);
|
||||
check_error(cudaPeekAtLastError());
|
||||
|
||||
|
||||
size = layer.batch*layer.c*layer.crop_width*layer.crop_height;
|
||||
|
||||
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.c, layer.h, layer.w,
|
||||
layer.crop_height, layer.crop_width, dh, dw, flip, angle, layer.output_gpu);
|
||||
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.rand_gpu, size, layer.c, layer.h, layer.w, layer.crop_height, layer.crop_width, state.train, layer.flip, radians, layer.output_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
|
||||
/*
|
||||
@ -186,6 +197,14 @@ extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
|
||||
image im = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 0*(size/layer.batch));
|
||||
image im2 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 1*(size/layer.batch));
|
||||
image im3 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 2*(size/layer.batch));
|
||||
|
||||
translate_image(im, -translate);
|
||||
scale_image(im, 1/scale);
|
||||
translate_image(im2, -translate);
|
||||
scale_image(im2, 1/scale);
|
||||
translate_image(im3, -translate);
|
||||
scale_image(im3, 1/scale);
|
||||
|
||||
show_image(im, "cropped");
|
||||
show_image(im2, "cropped2");
|
||||
show_image(im3, "cropped3");
|
||||
|
@ -68,7 +68,7 @@ void partial(char *cfgfile, char *weightfile, char *outfile, int max)
|
||||
if(weightfile){
|
||||
load_weights_upto(&net, weightfile, max);
|
||||
}
|
||||
//net.seen = 0;
|
||||
net.seen = 0;
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
|
@ -82,6 +82,8 @@ void train_detection(char *cfgfile, char *weightfile)
|
||||
plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
|
||||
}else{
|
||||
plist = get_paths("/home/pjreddie/data/voc/trainall.txt");
|
||||
//plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
|
||||
//plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
|
||||
}
|
||||
paths = (char **)list_to_array(plist);
|
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
@ -94,13 +96,11 @@ void train_detection(char *cfgfile, char *weightfile)
|
||||
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
|
||||
/*
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
||||
image copy = copy_image(im);
|
||||
translate_image(copy, 1);
|
||||
scale_image(copy, .5);
|
||||
draw_detection(copy, train.y.vals[114], 7);
|
||||
free_image(copy);
|
||||
*/
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
||||
image copy = copy_image(im);
|
||||
draw_detection(copy, train.y.vals[114], 7);
|
||||
free_image(copy);
|
||||
*/
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
|
@ -182,8 +182,8 @@ void show_image(image p, char *name)
|
||||
}
|
||||
}
|
||||
free_image(copy);
|
||||
if(disp->height < 500 || disp->width < 500 || disp->height > 1000){
|
||||
int w = 500;
|
||||
if(disp->height < 448 || disp->width < 448 || disp->height > 1000){
|
||||
int w = 448;
|
||||
int h = w*p.h/p.w;
|
||||
if(h > 1000){
|
||||
h = 1000;
|
||||
@ -191,7 +191,7 @@ void show_image(image p, char *name)
|
||||
}
|
||||
IplImage *buffer = disp;
|
||||
disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels);
|
||||
cvResize(buffer, disp, CV_INTER_NN);
|
||||
cvResize(buffer, disp, CV_INTER_LINEAR);
|
||||
cvReleaseImage(&buffer);
|
||||
}
|
||||
cvShowImage(buff, disp);
|
||||
|
@ -187,6 +187,8 @@ crop_layer *parse_crop(list *options, size_params params)
|
||||
int crop_width = option_find_int(options, "crop_width",1);
|
||||
int flip = option_find_int(options, "flip",0);
|
||||
float angle = option_find_float(options, "angle",0);
|
||||
float saturation = option_find_float(options, "saturation",1);
|
||||
float exposure = option_find_float(options, "exposure",1);
|
||||
|
||||
int batch,h,w,c;
|
||||
h = params.h;
|
||||
@ -195,7 +197,7 @@ crop_layer *parse_crop(list *options, size_params params)
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before crop layer must output image.");
|
||||
|
||||
crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle);
|
||||
crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user