XNOR-net 21 FPS on CPU yolov2-tiny.cfg

This commit is contained in:
AlexeyAB
2018-08-22 02:33:23 +03:00
parent 8436251a05
commit f606b5456e
4 changed files with 236 additions and 20 deletions

View File

@ -132,6 +132,7 @@ size_t get_workspace_size(layer l){
return most;
}
#endif
if(l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float);
return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
}
@ -305,6 +306,10 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
if(xnor){
l.binary_weights = calloc(c*n*size*size, sizeof(float));
l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
int align = 8;
int src_align = l.out_h*l.out_w;
l.bit_align = src_align + (align - src_align % align);
}
if(batch_normalize){
@ -622,7 +627,7 @@ void binary_align_weights(convolutional_layer *l)
}
// further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin()
size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align)
size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align)
{
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
size_t t_intput_size = new_ldb * n;
@ -637,12 +642,17 @@ size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input,
//printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k);
//printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb);
int blocksize = 64;
transpose_block_SSE4x4(b, t_input, k, n, n, new_ldb, blocksize);
int src_size = k * bit_align;
//printf("\n blocksize = %d \n", blocksize);
float_to_bit(b, t_input, src_size);
// b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size
// t_input - [bit_align, k] - [n', k]
// t_bit_input - [new_ldb, n] - [k', n]
transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8);
//transpose_bin(b, *t_bit_input, k, n, bit_align, new_ldb, 8);
float_to_bit(t_input, *t_bit_input, t_intput_size);
free(t_input);
return t_intput_size;
@ -691,12 +701,16 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
//if (l.xnor && l.size == 3 && l.stride == 1 && l.pad == 1) {}
//else
// further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin()
im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
//im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
//gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
if (l.xnor) {
//im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float));
im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
size_t output_size = l.outputs;
//float *count_output = calloc(output_size, sizeof(float));
//size_t bit_output_size = output_size / 8 + 1;
@ -790,7 +804,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
int ldb_align = l.lda_align;
size_t new_ldb = k + (ldb_align - k%ldb_align);
char *t_bit_input = NULL;
size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align);
size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align, l.bit_align);
//char *t_bit_input = calloc(new_ldb * n, sizeof(char)); // for im2col_cpu_custom_transpose() only
//float_to_bit(t_input, t_bit_input, new_ldb * n); // for im2col_cpu_custom_transpose() only
@ -825,6 +839,8 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
//free(mean_arr);
}
else {
im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n);
// bit-count to float
}