diff --git a/README.md b/README.md index bd11ac56..028b2622 100644 --- a/README.md +++ b/README.md @@ -85,20 +85,18 @@ Others: https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights` -* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2` -* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2` +* **Yolo v3** 236 MB COCO - image: `darknet.exe detector test data/coco.data cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25` +* Alternative method Yolo v3 COCO-model - image: `darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25` +* Output coordinates of objects: `darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -thresh 0.25 dog.jpg -ext_output` * 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0` -* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0` * 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` -* 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi` * 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi` * Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` -* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0` -* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` +* 43 MB VOC-model for video: `darknet.exe detector demo data/coco.data cfg/yolov2-tiny.cfg yolov2-tiny.weights test.mp4 -i 0` +* **Yolo v3** 236 MB COCO for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` * 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` * 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0` * 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights` -* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4` * Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app * To process a list of images `data/train.txt` and save results of detection to `result.txt` use: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show < data/train.txt > result.txt` diff --git a/build/darknet/x64/darknet_yolo_v3.cmd b/build/darknet/x64/darknet_yolo_v3.cmd index b3347ee3..2d05bdc1 100644 --- a/build/darknet/x64/darknet_yolo_v3.cmd +++ b/build/darknet/x64/darknet_yolo_v3.cmd @@ -1,5 +1,5 @@ -darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -i 0 -thresh 0.25 dog.jpg +darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -i 0 -thresh 0.25 dog.jpg -ext_output pause \ No newline at end of file diff --git a/src/image.c b/src/image.c index 467b95c3..790d0041 100644 --- a/src/image.c +++ b/src/image.c @@ -284,7 +284,7 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char * const int best_class = selected_detections[i].best_class; printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100); if (ext_output) - printf("\t(left: %.0f\ttop: %.0f\tw: %0.f\th: %0.f)\n", + printf("\t(left: %.0f \ttop: %.0f \tw: %0.f \th: %0.f)\n", (selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w, (selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h, selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h); diff --git a/src/yolo_layer.c b/src/yolo_layer.c index b2443bab..e37c175b 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -55,7 +55,7 @@ layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); #endif - fprintf(stderr, "detection\n"); + fprintf(stderr, "yolo\n"); srand(0); return l;