mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixed README.md
This commit is contained in:
12
README.md
12
README.md
@ -85,20 +85,18 @@ Others: https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg
|
|||||||
|
|
||||||
On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
|
On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
|
||||||
|
|
||||||
* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
|
* **Yolo v3** 236 MB COCO - image: `darknet.exe detector test data/coco.data cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25`
|
||||||
* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
|
* Alternative method Yolo v3 COCO-model - image: `darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25`
|
||||||
|
* Output coordinates of objects: `darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -thresh 0.25 dog.jpg -ext_output`
|
||||||
* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
|
* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
|
||||||
* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
|
|
||||||
* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
|
* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
|
||||||
* 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi`
|
|
||||||
* 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi`
|
* 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi`
|
||||||
* Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
|
* Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
|
||||||
* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
|
* 43 MB VOC-model for video: `darknet.exe detector demo data/coco.data cfg/yolov2-tiny.cfg yolov2-tiny.weights test.mp4 -i 0`
|
||||||
* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
|
* **Yolo v3** 236 MB COCO for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
|
||||||
* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
|
* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
|
||||||
* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
|
* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
|
||||||
* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
|
* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
|
||||||
* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
|
|
||||||
* Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
|
* Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
|
||||||
* To process a list of images `data/train.txt` and save results of detection to `result.txt` use:
|
* To process a list of images `data/train.txt` and save results of detection to `result.txt` use:
|
||||||
`darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show < data/train.txt > result.txt`
|
`darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show < data/train.txt > result.txt`
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
|
|
||||||
darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -i 0 -thresh 0.25 dog.jpg
|
darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -i 0 -thresh 0.25 dog.jpg -ext_output
|
||||||
|
|
||||||
|
|
||||||
pause
|
pause
|
@ -284,7 +284,7 @@ void draw_detections_v3(image im, detection *dets, int num, float thresh, char *
|
|||||||
const int best_class = selected_detections[i].best_class;
|
const int best_class = selected_detections[i].best_class;
|
||||||
printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100);
|
printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100);
|
||||||
if (ext_output)
|
if (ext_output)
|
||||||
printf("\t(left: %.0f\ttop: %.0f\tw: %0.f\th: %0.f)\n",
|
printf("\t(left: %.0f \ttop: %.0f \tw: %0.f \th: %0.f)\n",
|
||||||
(selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w,
|
(selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w,
|
||||||
(selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h,
|
(selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h,
|
||||||
selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h);
|
selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h);
|
||||||
|
@ -55,7 +55,7 @@ layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int
|
|||||||
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
|
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
fprintf(stderr, "detection\n");
|
fprintf(stderr, "yolo\n");
|
||||||
srand(0);
|
srand(0);
|
||||||
|
|
||||||
return l;
|
return l;
|
||||||
|
Reference in New Issue
Block a user