mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Big changes to detection
This commit is contained in:
37
src/parser.c
37
src/parser.c
@ -13,6 +13,7 @@
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
#include "detection_layer.h"
|
||||
#include "freeweight_layer.h"
|
||||
#include "list.h"
|
||||
#include "option_list.h"
|
||||
@ -32,6 +33,7 @@ int is_freeweight(section *s);
|
||||
int is_softmax(section *s);
|
||||
int is_crop(section *s);
|
||||
int is_cost(section *s);
|
||||
int is_detection(section *s);
|
||||
int is_normalization(section *s);
|
||||
list *read_cfg(char *filename);
|
||||
|
||||
@ -204,6 +206,24 @@ softmax_layer *parse_softmax(list *options, network *net, int count)
|
||||
return layer;
|
||||
}
|
||||
|
||||
detection_layer *parse_detection(list *options, network *net, int count)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
int coords = option_find_int(options, "coords", 1);
|
||||
int classes = option_find_int(options, "classes", 1);
|
||||
int rescore = option_find_int(options, "rescore", 1);
|
||||
detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
cost_layer *parse_cost(list *options, network *net, int count)
|
||||
{
|
||||
int input;
|
||||
@ -368,6 +388,10 @@ network parse_network_cfg(char *filename)
|
||||
cost_layer *layer = parse_cost(options, &net, count);
|
||||
net.types[count] = COST;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_detection(s)){
|
||||
detection_layer *layer = parse_detection(options, &net, count);
|
||||
net.types[count] = DETECTION;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_softmax(s)){
|
||||
softmax_layer *layer = parse_softmax(options, &net, count);
|
||||
net.types[count] = SOFTMAX;
|
||||
@ -410,6 +434,10 @@ int is_cost(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[cost]")==0);
|
||||
}
|
||||
int is_detection(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[detection]")==0);
|
||||
}
|
||||
int is_deconvolutional(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[deconv]")==0
|
||||
@ -684,6 +712,13 @@ void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[detection]\n");
|
||||
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\n", l->classes, l->coords, l->rescore);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
|
||||
@ -815,6 +850,8 @@ void save_network(network net, char *filename)
|
||||
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DETECTION)
|
||||
print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == COST)
|
||||
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
|
||||
}
|
||||
|
Reference in New Issue
Block a user