mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixed some problems with visualizing networks
This commit is contained in:
parent
9dd0cab9dc
commit
fdcc096694
@ -41,13 +41,13 @@ void train_captcha2(char *cfgfile, char *weightfile)
|
||||
//net.seen=0;
|
||||
int imgs = 1024;
|
||||
int i = net.seen/imgs;
|
||||
int solved = 1;
|
||||
int solved = 0;
|
||||
list *plist;
|
||||
char **labels = get_labels("/data/captcha/reimgs.labels2.list");
|
||||
if (solved){
|
||||
plist = get_paths("/data/captcha/reimgs.solved.list");
|
||||
}else{
|
||||
plist = get_paths("/data/captcha/reimgs.train.list");
|
||||
plist = get_paths("/data/captcha/reimgs.raw.list");
|
||||
}
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
printf("%d\n", plist->size);
|
||||
@ -96,7 +96,6 @@ void test_captcha2(char *cfgfile, char *weightfile, char *filename)
|
||||
srand(2222222);
|
||||
int i = 0;
|
||||
char **names = get_labels("/data/captcha/reimgs.labels2.list");
|
||||
clock_t time;
|
||||
char input[256];
|
||||
int indexes[26];
|
||||
while(1){
|
||||
@ -110,7 +109,6 @@ void test_captcha2(char *cfgfile, char *weightfile, char *filename)
|
||||
}
|
||||
image im = load_image_color(input, net.w, net.h);
|
||||
float *X = im.data;
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
top_predictions(net, 26, indexes);
|
||||
//printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
@ -126,6 +124,47 @@ void test_captcha2(char *cfgfile, char *weightfile, char *filename)
|
||||
}
|
||||
}
|
||||
|
||||
void valid_captcha(char *cfgfile, char *weightfile, char *filename)
|
||||
{
|
||||
char **labels = get_labels("/data/captcha/reimgs.labels.list");
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
list *plist = get_paths("/data/captcha/reimgs.fg.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int N = plist->size;
|
||||
int outputs = net.outputs;
|
||||
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
int i, j;
|
||||
for(i = 0; i < N; ++i){
|
||||
if (i%100 == 0) fprintf(stderr, "%d\n", i);
|
||||
image im = load_image_color(paths[i], net.w, net.h);
|
||||
float *X = im.data;
|
||||
float *predictions = network_predict(net, X);
|
||||
//printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
int truth = -1;
|
||||
for(j = 0; j < 13; ++j){
|
||||
if (strstr(paths[i], labels[j])) truth = j;
|
||||
}
|
||||
if (truth == -1){
|
||||
fprintf(stderr, "bad: %s\n", paths[i]);
|
||||
return;
|
||||
}
|
||||
printf("%d, ", truth);
|
||||
for(j = 0; j < outputs; ++j){
|
||||
if (j != 0) printf(", ");
|
||||
printf("%f", predictions[j]);
|
||||
}
|
||||
printf("\n");
|
||||
fflush(stdout);
|
||||
free_image(im);
|
||||
if (filename) break;
|
||||
}
|
||||
}
|
||||
|
||||
void train_captcha(char *cfgfile, char *weightfile)
|
||||
{
|
||||
data_seed = time(0);
|
||||
@ -189,7 +228,6 @@ void test_captcha(char *cfgfile, char *weightfile, char *filename)
|
||||
srand(2222222);
|
||||
int i = 0;
|
||||
char **names = get_labels("/data/captcha/reimgs.labels.list");
|
||||
clock_t time;
|
||||
char input[256];
|
||||
int indexes[13];
|
||||
while(1){
|
||||
@ -203,7 +241,6 @@ void test_captcha(char *cfgfile, char *weightfile, char *filename)
|
||||
}
|
||||
image im = load_image_color(input, net.w, net.h);
|
||||
float *X = im.data;
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
top_predictions(net, 13, indexes);
|
||||
//printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
@ -400,6 +437,7 @@ void run_captcha(int argc, char **argv)
|
||||
char *filename = (argc > 5) ? argv[5]: 0;
|
||||
if(0==strcmp(argv[2], "train")) train_captcha2(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "test")) test_captcha2(cfg, weights, filename);
|
||||
else if(0==strcmp(argv[2], "valid")) valid_captcha(cfg, weights, filename);
|
||||
//if(0==strcmp(argv[2], "test")) test_captcha(cfg, weights);
|
||||
//else if(0==strcmp(argv[2], "encode")) encode_captcha(cfg, weights);
|
||||
//else if(0==strcmp(argv[2], "decode")) decode_captcha(cfg, weights);
|
||||
|
@ -248,6 +248,7 @@ image *get_filters(convolutional_layer l)
|
||||
int i;
|
||||
for(i = 0; i < l.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(l, i));
|
||||
normalize_image(filters[i]);
|
||||
}
|
||||
return filters;
|
||||
}
|
||||
|
@ -197,8 +197,6 @@ void fill_truth_detection(char *path, float *truth, int classes, int num_boxes,
|
||||
h = constrain(0, 1, h);
|
||||
if (w < .01 || h < .01) continue;
|
||||
if(1){
|
||||
//w = sqrt(w);
|
||||
//h = sqrt(h);
|
||||
w = pow(w, 1./2.);
|
||||
h = pow(h, 1./2.);
|
||||
}
|
||||
|
14
src/image.c
14
src/image.c
@ -188,7 +188,7 @@ void show_image_cv(image p, char *name)
|
||||
int x,y,k;
|
||||
image copy = copy_image(p);
|
||||
constrain_image(copy);
|
||||
rgbgr_image(copy);
|
||||
if(p.c == 3) rgbgr_image(copy);
|
||||
//normalize_image(copy);
|
||||
|
||||
char buff[256];
|
||||
@ -849,8 +849,16 @@ image collapse_images_horz(image *ims, int n)
|
||||
void show_images(image *ims, int n, char *window)
|
||||
{
|
||||
image m = collapse_images_vert(ims, n);
|
||||
save_image(m, window);
|
||||
show_image(m, window);
|
||||
int w = 448;
|
||||
int h = ((float)m.h/m.w) * 448;
|
||||
if(h > 896){
|
||||
h = 896;
|
||||
w = ((float)m.w/m.h) * 896;
|
||||
}
|
||||
image sized = resize_image(m, w, h);
|
||||
save_image(sized, window);
|
||||
show_image(sized, window);
|
||||
free_image(sized);
|
||||
free_image(m);
|
||||
}
|
||||
|
||||
|
@ -47,7 +47,7 @@ void train_imagenet(char *cfgfile, char *weightfile)
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
|
||||
free_data(train);
|
||||
if((i % 20000) == 0) net.learning_rate *= .1;
|
||||
if((i % 30000) == 0) net.learning_rate *= .1;
|
||||
if(i%1000==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
|
||||
|
@ -125,13 +125,20 @@ float *get_network_output(network net)
|
||||
|
||||
float get_network_cost(network net)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
int count = 0;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.layers[net.n-1].type == COST){
|
||||
return net.layers[net.n-1].output[0];
|
||||
sum += net.layers[net.n-1].output[0];
|
||||
++count;
|
||||
}
|
||||
if(net.layers[net.n-1].type == DETECTION){
|
||||
return net.layers[net.n-1].cost[0];
|
||||
sum += net.layers[net.n-1].cost[0];
|
||||
++count;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
return sum/count;
|
||||
}
|
||||
|
||||
int get_predicted_class_network(network net)
|
||||
|
Loading…
Reference in New Issue
Block a user