mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixed yolo_console_dll.cpp
This commit is contained in:
200
scripts/voc_eval.py
Normal file
200
scripts/voc_eval.py
Normal file
@ -0,0 +1,200 @@
|
||||
# --------------------------------------------------------
|
||||
# Fast/er R-CNN
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# Written by Bharath Hariharan
|
||||
# --------------------------------------------------------
|
||||
|
||||
import xml.etree.ElementTree as ET
|
||||
import os
|
||||
import cPickle
|
||||
import numpy as np
|
||||
|
||||
def parse_rec(filename):
|
||||
""" Parse a PASCAL VOC xml file """
|
||||
tree = ET.parse(filename)
|
||||
objects = []
|
||||
for obj in tree.findall('object'):
|
||||
obj_struct = {}
|
||||
obj_struct['name'] = obj.find('name').text
|
||||
#obj_struct['pose'] = obj.find('pose').text
|
||||
#obj_struct['truncated'] = int(obj.find('truncated').text)
|
||||
obj_struct['difficult'] = int(obj.find('difficult').text)
|
||||
bbox = obj.find('bndbox')
|
||||
obj_struct['bbox'] = [int(bbox.find('xmin').text),
|
||||
int(bbox.find('ymin').text),
|
||||
int(bbox.find('xmax').text),
|
||||
int(bbox.find('ymax').text)]
|
||||
objects.append(obj_struct)
|
||||
|
||||
return objects
|
||||
|
||||
def voc_ap(rec, prec, use_07_metric=False):
|
||||
""" ap = voc_ap(rec, prec, [use_07_metric])
|
||||
Compute VOC AP given precision and recall.
|
||||
If use_07_metric is true, uses the
|
||||
VOC 07 11 point method (default:False).
|
||||
"""
|
||||
if use_07_metric:
|
||||
# 11 point metric
|
||||
ap = 0.
|
||||
for t in np.arange(0., 1.1, 0.1):
|
||||
if np.sum(rec >= t) == 0:
|
||||
p = 0
|
||||
else:
|
||||
p = np.max(prec[rec >= t])
|
||||
ap = ap + p / 11.
|
||||
else:
|
||||
# correct AP calculation
|
||||
# first append sentinel values at the end
|
||||
mrec = np.concatenate(([0.], rec, [1.]))
|
||||
mpre = np.concatenate(([0.], prec, [0.]))
|
||||
|
||||
# compute the precision envelope
|
||||
for i in range(mpre.size - 1, 0, -1):
|
||||
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
||||
|
||||
# to calculate area under PR curve, look for points
|
||||
# where X axis (recall) changes value
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0]
|
||||
|
||||
# and sum (\Delta recall) * prec
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
||||
return ap
|
||||
|
||||
def voc_eval(detpath,
|
||||
annopath,
|
||||
imagesetfile,
|
||||
classname,
|
||||
cachedir,
|
||||
ovthresh=0.5,
|
||||
use_07_metric=False):
|
||||
"""rec, prec, ap = voc_eval(detpath,
|
||||
annopath,
|
||||
imagesetfile,
|
||||
classname,
|
||||
[ovthresh],
|
||||
[use_07_metric])
|
||||
|
||||
Top level function that does the PASCAL VOC evaluation.
|
||||
|
||||
detpath: Path to detections
|
||||
detpath.format(classname) should produce the detection results file.
|
||||
annopath: Path to annotations
|
||||
annopath.format(imagename) should be the xml annotations file.
|
||||
imagesetfile: Text file containing the list of images, one image per line.
|
||||
classname: Category name (duh)
|
||||
cachedir: Directory for caching the annotations
|
||||
[ovthresh]: Overlap threshold (default = 0.5)
|
||||
[use_07_metric]: Whether to use VOC07's 11 point AP computation
|
||||
(default False)
|
||||
"""
|
||||
# assumes detections are in detpath.format(classname)
|
||||
# assumes annotations are in annopath.format(imagename)
|
||||
# assumes imagesetfile is a text file with each line an image name
|
||||
# cachedir caches the annotations in a pickle file
|
||||
|
||||
# first load gt
|
||||
if not os.path.isdir(cachedir):
|
||||
os.mkdir(cachedir)
|
||||
cachefile = os.path.join(cachedir, 'annots.pkl')
|
||||
# read list of images
|
||||
with open(imagesetfile, 'r') as f:
|
||||
lines = f.readlines()
|
||||
imagenames = [x.strip() for x in lines]
|
||||
|
||||
if not os.path.isfile(cachefile):
|
||||
# load annots
|
||||
recs = {}
|
||||
for i, imagename in enumerate(imagenames):
|
||||
recs[imagename] = parse_rec(annopath.format(imagename))
|
||||
if i % 100 == 0:
|
||||
print 'Reading annotation for {:d}/{:d}'.format(
|
||||
i + 1, len(imagenames))
|
||||
# save
|
||||
print 'Saving cached annotations to {:s}'.format(cachefile)
|
||||
with open(cachefile, 'w') as f:
|
||||
cPickle.dump(recs, f)
|
||||
else:
|
||||
# load
|
||||
with open(cachefile, 'r') as f:
|
||||
recs = cPickle.load(f)
|
||||
|
||||
# extract gt objects for this class
|
||||
class_recs = {}
|
||||
npos = 0
|
||||
for imagename in imagenames:
|
||||
R = [obj for obj in recs[imagename] if obj['name'] == classname]
|
||||
bbox = np.array([x['bbox'] for x in R])
|
||||
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
|
||||
det = [False] * len(R)
|
||||
npos = npos + sum(~difficult)
|
||||
class_recs[imagename] = {'bbox': bbox,
|
||||
'difficult': difficult,
|
||||
'det': det}
|
||||
|
||||
# read dets
|
||||
detfile = detpath.format(classname)
|
||||
with open(detfile, 'r') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
splitlines = [x.strip().split(' ') for x in lines]
|
||||
image_ids = [x[0] for x in splitlines]
|
||||
confidence = np.array([float(x[1]) for x in splitlines])
|
||||
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
|
||||
|
||||
# sort by confidence
|
||||
sorted_ind = np.argsort(-confidence)
|
||||
sorted_scores = np.sort(-confidence)
|
||||
BB = BB[sorted_ind, :]
|
||||
image_ids = [image_ids[x] for x in sorted_ind]
|
||||
|
||||
# go down dets and mark TPs and FPs
|
||||
nd = len(image_ids)
|
||||
tp = np.zeros(nd)
|
||||
fp = np.zeros(nd)
|
||||
for d in range(nd):
|
||||
R = class_recs[image_ids[d]]
|
||||
bb = BB[d, :].astype(float)
|
||||
ovmax = -np.inf
|
||||
BBGT = R['bbox'].astype(float)
|
||||
|
||||
if BBGT.size > 0:
|
||||
# compute overlaps
|
||||
# intersection
|
||||
ixmin = np.maximum(BBGT[:, 0], bb[0])
|
||||
iymin = np.maximum(BBGT[:, 1], bb[1])
|
||||
ixmax = np.minimum(BBGT[:, 2], bb[2])
|
||||
iymax = np.minimum(BBGT[:, 3], bb[3])
|
||||
iw = np.maximum(ixmax - ixmin + 1., 0.)
|
||||
ih = np.maximum(iymax - iymin + 1., 0.)
|
||||
inters = iw * ih
|
||||
|
||||
# union
|
||||
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
|
||||
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
|
||||
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
|
||||
|
||||
overlaps = inters / uni
|
||||
ovmax = np.max(overlaps)
|
||||
jmax = np.argmax(overlaps)
|
||||
|
||||
if ovmax > ovthresh:
|
||||
if not R['difficult'][jmax]:
|
||||
if not R['det'][jmax]:
|
||||
tp[d] = 1.
|
||||
R['det'][jmax] = 1
|
||||
else:
|
||||
fp[d] = 1.
|
||||
else:
|
||||
fp[d] = 1.
|
||||
|
||||
# compute precision recall
|
||||
fp = np.cumsum(fp)
|
||||
tp = np.cumsum(tp)
|
||||
rec = tp / float(npos)
|
||||
# avoid divide by zero in case the first detection matches a difficult
|
||||
# ground truth
|
||||
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
|
||||
ap = voc_ap(rec, prec, use_07_metric)
|
||||
|
||||
return rec, prec, ap
|
Reference in New Issue
Block a user