mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
detection exp
This commit is contained in:
parent
46e1b263e1
commit
ff7e03325a
197
cfg/detection.cfg
Normal file
197
cfg/detection.cfg
Normal file
@ -0,0 +1,197 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=4
|
||||
height=448
|
||||
width=448
|
||||
channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen = 0
|
||||
|
||||
[crop]
|
||||
crop_width=448
|
||||
crop_height=448
|
||||
flip=0
|
||||
angle=0
|
||||
saturation = 2
|
||||
exposure = 2
|
||||
|
||||
[convolutional]
|
||||
filters=64
|
||||
size=7
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=192
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
|
||||
[connected]
|
||||
output=4096
|
||||
activation=ramp
|
||||
|
||||
[dropout]
|
||||
probability=.5
|
||||
|
||||
[connected]
|
||||
output=1225
|
||||
activation=logistic
|
||||
|
||||
[detection]
|
||||
classes=20
|
||||
coords=4
|
||||
rescore=0
|
||||
nuisance = 1
|
||||
background=1
|
198
cfg/rescore.cfg
Normal file
198
cfg/rescore.cfg
Normal file
@ -0,0 +1,198 @@
|
||||
[net]
|
||||
batch=64
|
||||
subdivisions=4
|
||||
height=448
|
||||
width=448
|
||||
channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen = 0
|
||||
|
||||
[crop]
|
||||
crop_width=448
|
||||
crop_height=448
|
||||
flip=0
|
||||
angle=0
|
||||
saturation = 2
|
||||
exposure = 2
|
||||
|
||||
[convolutional]
|
||||
filters=64
|
||||
size=7
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=192
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=128
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=256
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=512
|
||||
size=1
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=2
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
|
||||
[convolutional]
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=1024
|
||||
activation=ramp
|
||||
|
||||
[connected]
|
||||
output=4096
|
||||
activation=ramp
|
||||
|
||||
[dropout]
|
||||
probability=.5
|
||||
|
||||
[connected]
|
||||
output=1225
|
||||
activation=logistic
|
||||
|
||||
[detection]
|
||||
classes=20
|
||||
coords=4
|
||||
rescore=1
|
||||
nuisance = 0
|
||||
background=0
|
||||
|
@ -29,7 +29,8 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
l.biases = calloc(outputs, sizeof(float));
|
||||
|
||||
|
||||
float scale = 1./sqrt(inputs);
|
||||
//float scale = 1./sqrt(inputs);
|
||||
float scale = sqrt(2./inputs);
|
||||
for(i = 0; i < inputs*outputs; ++i){
|
||||
l.weights[i] = 2*scale*rand_uniform() - scale;
|
||||
}
|
||||
|
@ -61,7 +61,8 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
|
||||
l.biases = calloc(n, sizeof(float));
|
||||
l.bias_updates = calloc(n, sizeof(float));
|
||||
float scale = 1./sqrt(size*size*c);
|
||||
//float scale = 1./sqrt(size*size*c);
|
||||
float scale = sqrt(2./(size*size*c));
|
||||
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
|
||||
for(i = 0; i < n; ++i){
|
||||
l.biases[i] = scale;
|
||||
|
@ -174,7 +174,7 @@ void fill_truth_detection(char *path, float *truth, int classes, int num_boxes,
|
||||
}
|
||||
|
||||
int index = (i+j*num_boxes)*(4+classes+background);
|
||||
//if(truth[index+classes+background+2]) continue;
|
||||
if(truth[index+classes+background+2]) continue;
|
||||
if(background) truth[index++] = 0;
|
||||
truth[index+id] = 1;
|
||||
index += classes;
|
||||
|
@ -47,6 +47,8 @@ void draw_detection(image im, float *box, int side, char *label)
|
||||
int top = (y-h/2)*im.h;
|
||||
int bot = (y+h/2)*im.h;
|
||||
draw_box(im, left, top, right, bot, red, green, blue);
|
||||
draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue);
|
||||
draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -116,7 +118,11 @@ void train_localization(char *cfgfile, char *weightfile)
|
||||
float loss = train_network(net, train);
|
||||
|
||||
//TODO
|
||||
#ifdef GPU
|
||||
float *out = get_network_output_gpu(net);
|
||||
#else
|
||||
float *out = get_network_output(net);
|
||||
#endif
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[127]);
|
||||
image copy = copy_image(im);
|
||||
draw_localization(copy, &(out[63*80]));
|
||||
@ -213,7 +219,7 @@ void train_detection_teststuff(char *cfgfile, char *weightfile)
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||||
if(i == 100){
|
||||
net.learning_rate *= 10;
|
||||
//net.learning_rate *= 10;
|
||||
}
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
@ -309,8 +315,8 @@ void predict_detections(network net, data d, float threshold, int offset, int cl
|
||||
float y = (pred.vals[j][ci + 1] + row)/num_boxes;
|
||||
float w = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
|
||||
float h = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
|
||||
w = pow(w, 1);
|
||||
h = pow(h, 1);
|
||||
w = pow(w, 2);
|
||||
h = pow(h, 2);
|
||||
float prob = scale*pred.vals[j][k+class+background+nuisance];
|
||||
if(prob < threshold) continue;
|
||||
printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h);
|
||||
|
@ -330,8 +330,9 @@ void forward_detection_layer(const detection_layer l, network_state state)
|
||||
l.output[out_i++] = mask*state.input[in_i++];
|
||||
}
|
||||
}
|
||||
float avg_iou = 0;
|
||||
int count = 0;
|
||||
if(l.does_cost && state.train){
|
||||
int count = 0;
|
||||
*(l.cost) = 0;
|
||||
int size = get_detection_layer_output_size(l) * l.batch;
|
||||
memset(l.delta, 0, size * sizeof(float));
|
||||
@ -342,65 +343,54 @@ void forward_detection_layer(const detection_layer l, network_state state)
|
||||
*(l.cost) += pow(state.truth[j] - l.output[j], 2);
|
||||
l.delta[j] = state.truth[j] - l.output[j];
|
||||
}
|
||||
|
||||
box truth;
|
||||
truth.x = state.truth[j+0];
|
||||
truth.y = state.truth[j+1];
|
||||
truth.w = state.truth[j+2];
|
||||
truth.h = state.truth[j+3];
|
||||
truth.x = state.truth[j+0]/7;
|
||||
truth.y = state.truth[j+1]/7;
|
||||
truth.w = pow(state.truth[j+2], 2);
|
||||
truth.h = pow(state.truth[j+3], 2);
|
||||
box out;
|
||||
out.x = l.output[j+0];
|
||||
out.y = l.output[j+1];
|
||||
out.w = l.output[j+2];
|
||||
out.h = l.output[j+3];
|
||||
out.x = l.output[j+0]/7;
|
||||
out.y = l.output[j+1]/7;
|
||||
out.w = pow(l.output[j+2], 2);
|
||||
out.h = pow(l.output[j+3], 2);
|
||||
|
||||
if(!(truth.w*truth.h)) continue;
|
||||
l.delta[j+0] = (truth.x - out.x);
|
||||
l.delta[j+1] = (truth.y - out.y);
|
||||
l.delta[j+2] = (truth.w - out.w);
|
||||
l.delta[j+3] = (truth.h - out.h);
|
||||
*(l.cost) += pow((out.x - truth.x), 2);
|
||||
*(l.cost) += pow((out.y - truth.y), 2);
|
||||
*(l.cost) += pow((out.w - truth.w), 2);
|
||||
*(l.cost) += pow((out.h - truth.h), 2);
|
||||
|
||||
/*
|
||||
l.delta[j+0] = .1 * (truth.x - out.x) / (49 * truth.w * truth.w);
|
||||
l.delta[j+1] = .1 * (truth.y - out.y) / (49 * truth.h * truth.h);
|
||||
l.delta[j+2] = .1 * (truth.w - out.w) / ( truth.w * truth.w);
|
||||
l.delta[j+3] = .1 * (truth.h - out.h) / ( truth.h * truth.h);
|
||||
|
||||
*(l.cost) += pow((out.x - truth.x)/truth.w/7., 2);
|
||||
*(l.cost) += pow((out.y - truth.y)/truth.h/7., 2);
|
||||
*(l.cost) += pow((out.w - truth.w)/truth.w, 2);
|
||||
*(l.cost) += pow((out.h - truth.h)/truth.h, 2);
|
||||
*/
|
||||
float iou = box_iou(out, truth);
|
||||
avg_iou += iou;
|
||||
++count;
|
||||
dbox delta = diou(out, truth);
|
||||
|
||||
l.delta[j+0] = 10 * delta.dx/7;
|
||||
l.delta[j+1] = 10 * delta.dy/7;
|
||||
l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w);
|
||||
l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h);
|
||||
|
||||
|
||||
*(l.cost) += pow((1-iou), 2);
|
||||
if(0){
|
||||
l.delta[j+0] = (state.truth[j+0] - l.output[j+0]);
|
||||
l.delta[j+1] = (state.truth[j+1] - l.output[j+1]);
|
||||
l.delta[j+2] = (state.truth[j+2] - l.output[j+2]);
|
||||
l.delta[j+3] = (state.truth[j+3] - l.output[j+3]);
|
||||
}else{
|
||||
l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]) / 7;
|
||||
l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]) / 7;
|
||||
l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]);
|
||||
l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]);
|
||||
}
|
||||
if(0){
|
||||
for (j = offset; j < offset+classes; ++j) {
|
||||
if(state.truth[j]) state.truth[j] = iou;
|
||||
l.delta[j] = state.truth[j] - l.output[j];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
*/
|
||||
}
|
||||
printf("Avg IOU: %f\n", avg_iou/count);
|
||||
}
|
||||
/*
|
||||
int count = 0;
|
||||
for(i = 0; i < l.batch*locations; ++i){
|
||||
for(j = 0; j < l.classes+l.background; ++j){
|
||||
printf("%f, ", l.output[count++]);
|
||||
}
|
||||
printf("\n");
|
||||
for(j = 0; j < l.coords; ++j){
|
||||
printf("%f, ", l.output[count++]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
*/
|
||||
/*
|
||||
if(l.background || 1){
|
||||
for(i = 0; i < l.batch*locations; ++i){
|
||||
int index = i*(l.classes+l.coords+l.background);
|
||||
for(j= 0; j < l.classes; ++j){
|
||||
if(state.truth[index+j+l.background]){
|
||||
//dark_zone(l, j, index, state);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void backward_detection_layer(const detection_layer l, network_state state)
|
||||
|
Loading…
Reference in New Issue
Block a user