#include "deconvolutional_layer.h" #include "convolutional_layer.h" #include "batchnorm_layer.h" #include "utils.h" #include "im2col.h" #include "col2im.h" #include "blas.h" #include "gemm.h" #include #include static size_t get_workspace_size(layer l){ return (size_t)l.h*l.w*l.size*l.size*l.n*sizeof(float); } void bilinear_init(layer l) { int i,j,f; float center = (l.size-1) / 2.; for(f = 0; f < l.n; ++f){ for(j = 0; j < l.size; ++j){ for(i = 0; i < l.size; ++i){ float val = (1 - fabs(i - center)) * (1 - fabs(j - center)); int c = f%l.c; int ind = f*l.size*l.size*l.c + c*l.size*l.size + j*l.size + i; l.weights[ind] = val; } } } } layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int adam) { int i; layer l = {0}; l.type = DECONVOLUTIONAL; l.h = h; l.w = w; l.c = c; l.n = n; l.batch = batch; l.stride = stride; l.size = size; l.nweights = c*n*size*size; l.nbiases = n; l.weights = calloc(c*n*size*size, sizeof(float)); l.weight_updates = calloc(c*n*size*size, sizeof(float)); l.biases = calloc(n, sizeof(float)); l.bias_updates = calloc(n, sizeof(float)); //float scale = n/(size*size*c); //printf("scale: %f\n", scale); float scale = .02; for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_normal(); //bilinear_init(l); for(i = 0; i < n; ++i){ l.biases[i] = 0; } l.pad = padding; l.out_h = (l.h - 1) * l.stride + l.size - 2*l.pad; l.out_w = (l.w - 1) * l.stride + l.size - 2*l.pad; l.out_c = n; l.outputs = l.out_w * l.out_h * l.out_c; l.inputs = l.w * l.h * l.c; scal_cpu(l.nweights, (float)l.out_w*l.out_h/(l.w*l.h), l.weights, 1); l.output = calloc(l.batch*l.outputs, sizeof(float)); l.delta = calloc(l.batch*l.outputs, sizeof(float)); l.forward = forward_deconvolutional_layer; l.backward = backward_deconvolutional_layer; l.update = update_deconvolutional_layer; l.batch_normalize = batch_normalize; if(batch_normalize){ l.scales = calloc(n, sizeof(float)); l.scale_updates = calloc(n, sizeof(float)); for(i = 0; i < n; ++i){ l.scales[i] = 1; } l.mean = calloc(n, sizeof(float)); l.variance = calloc(n, sizeof(float)); l.mean_delta = calloc(n, sizeof(float)); l.variance_delta = calloc(n, sizeof(float)); l.rolling_mean = calloc(n, sizeof(float)); l.rolling_variance = calloc(n, sizeof(float)); l.x = calloc(l.batch*l.outputs, sizeof(float)); l.x_norm = calloc(l.batch*l.outputs, sizeof(float)); } if(adam){ l.m = calloc(c*n*size*size, sizeof(float)); l.v = calloc(c*n*size*size, sizeof(float)); l.bias_m = calloc(n, sizeof(float)); l.scale_m = calloc(n, sizeof(float)); l.bias_v = calloc(n, sizeof(float)); l.scale_v = calloc(n, sizeof(float)); } #ifdef GPU l.forward_gpu = forward_deconvolutional_layer_gpu; l.backward_gpu = backward_deconvolutional_layer_gpu; l.update_gpu = update_deconvolutional_layer_gpu; if(gpu_index >= 0){ if (adam) { l.m_gpu = cuda_make_array(l.m, c*n*size*size); l.v_gpu = cuda_make_array(l.v, c*n*size*size); l.bias_m_gpu = cuda_make_array(l.bias_m, n); l.bias_v_gpu = cuda_make_array(l.bias_v, n); l.scale_m_gpu = cuda_make_array(l.scale_m, n); l.scale_v_gpu = cuda_make_array(l.scale_v, n); } l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); l.biases_gpu = cuda_make_array(l.biases, n); l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); l.delta_gpu = cuda_make_array(l.delta, l.batch*l.out_h*l.out_w*n); l.output_gpu = cuda_make_array(l.output, l.batch*l.out_h*l.out_w*n); if(batch_normalize){ l.mean_gpu = cuda_make_array(0, n); l.variance_gpu = cuda_make_array(0, n); l.rolling_mean_gpu = cuda_make_array(0, n); l.rolling_variance_gpu = cuda_make_array(0, n); l.mean_delta_gpu = cuda_make_array(0, n); l.variance_delta_gpu = cuda_make_array(0, n); l.scales_gpu = cuda_make_array(l.scales, n); l.scale_updates_gpu = cuda_make_array(0, n); l.x_gpu = cuda_make_array(0, l.batch*l.out_h*l.out_w*n); l.x_norm_gpu = cuda_make_array(0, l.batch*l.out_h*l.out_w*n); } } #ifdef CUDNN cudnnCreateTensorDescriptor(&l.dstTensorDesc); cudnnCreateTensorDescriptor(&l.normTensorDesc); cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w); cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1); #endif #endif l.activation = activation; l.workspace_size = get_workspace_size(l); fprintf(stderr, "deconv%5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); return l; } void denormalize_deconvolutional_layer(layer l) { int i, j; for(i = 0; i < l.n; ++i){ float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); for(j = 0; j < l.c*l.size*l.size; ++j){ l.weights[i*l.c*l.size*l.size + j] *= scale; } l.biases[i] -= l.rolling_mean[i] * scale; l.scales[i] = 1; l.rolling_mean[i] = 0; l.rolling_variance[i] = 1; } } void resize_deconvolutional_layer(layer *l, int h, int w) { l->h = h; l->w = w; l->out_h = (l->h - 1) * l->stride + l->size - 2*l->pad; l->out_w = (l->w - 1) * l->stride + l->size - 2*l->pad; l->outputs = l->out_h * l->out_w * l->out_c; l->inputs = l->w * l->h * l->c; l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); if(l->batch_normalize){ l->x = realloc(l->x, l->batch*l->outputs*sizeof(float)); l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float)); } #ifdef GPU cuda_free(l->delta_gpu); cuda_free(l->output_gpu); l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); if(l->batch_normalize){ cuda_free(l->x_gpu); cuda_free(l->x_norm_gpu); l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); } #ifdef CUDNN cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); #endif #endif l->workspace_size = get_workspace_size(*l); } void forward_deconvolutional_layer(const layer l, network net) { int i; int m = l.size*l.size*l.n; int n = l.h*l.w; int k = l.c; fill_cpu(l.outputs*l.batch, 0, l.output, 1); for(i = 0; i < l.batch; ++i){ float *a = l.weights; float *b = net.input + i*l.c*l.h*l.w; float *c = net.workspace; gemm_cpu(1,0,m,n,k,1,a,m,b,n,0,c,n); col2im_cpu(net.workspace, l.out_c, l.out_h, l.out_w, l.size, l.stride, l.pad, l.output+i*l.outputs); } if (l.batch_normalize) { forward_batchnorm_layer(l, net); } else { add_bias(l.output, l.biases, l.batch, l.n, l.out_w*l.out_h); } activate_array(l.output, l.batch*l.n*l.out_w*l.out_h, l.activation); } void backward_deconvolutional_layer(layer l, network net) { int i; gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); if(l.batch_normalize){ backward_batchnorm_layer(l, net); } else { backward_bias(l.bias_updates, l.delta, l.batch, l.n, l.out_w*l.out_h); } //if(net.delta) memset(net.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float)); for(i = 0; i < l.batch; ++i){ int m = l.c; int n = l.size*l.size*l.n; int k = l.h*l.w; float *a = net.input + i*m*k; float *b = net.workspace; float *c = l.weight_updates; im2col_cpu(l.delta + i*l.outputs, l.out_c, l.out_h, l.out_w, l.size, l.stride, l.pad, b); gemm_cpu(0,1,m,n,k,1,a,k,b,k,1,c,n); if(net.delta){ int m = l.c; int n = l.h*l.w; int k = l.size*l.size*l.n; float *a = l.weights; float *b = net.workspace; float *c = net.delta + i*n*m; gemm_cpu(0,0,m,n,k,1,a,k,b,n,1,c,n); } } } void update_deconvolutional_layer(layer l, update_args a) { float learning_rate = a.learning_rate*l.learning_rate_scale; float momentum = a.momentum; float decay = a.decay; int batch = a.batch; int size = l.size*l.size*l.c*l.n; axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1); scal_cpu(l.n, momentum, l.bias_updates, 1); if(l.scales){ axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1); scal_cpu(l.n, momentum, l.scale_updates, 1); } axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); scal_cpu(size, momentum, l.weight_updates, 1); }