from ctypes import * import math import random def sample(probs): s = sum(probs) probs = [a/s for a in probs] r = random.uniform(0, 1) for i in range(len(probs)): r = r - probs[i] if r <= 0: return i return len(probs)-1 def c_array(ctype, values): arr = (ctype * len(values))() arr[:] = values return arr class BOX(Structure): _fields_ = [("x", c_float), ("y", c_float), ("w", c_float), ("h", c_float)] class IMAGE(Structure): _fields_ = [("w", c_int), ("h", c_int), ("c", c_int), ("data", POINTER(c_float))] class METADATA(Structure): _fields_ = [("classes", c_int), ("names", POINTER(c_char_p))] #lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) lib = CDLL("libdarknet.so", RTLD_GLOBAL) lib.network_width.argtypes = [c_void_p] lib.network_width.restype = c_int lib.network_height.argtypes = [c_void_p] lib.network_height.restype = c_int predict = lib.network_predict predict.argtypes = [c_void_p, POINTER(c_float)] predict.restype = POINTER(c_float) set_gpu = lib.cuda_set_device set_gpu.argtypes = [c_int] make_image = lib.make_image make_image.argtypes = [c_int, c_int, c_int] make_image.restype = IMAGE make_boxes = lib.make_boxes make_boxes.argtypes = [c_void_p] make_boxes.restype = POINTER(BOX) free_ptrs = lib.free_ptrs free_ptrs.argtypes = [POINTER(c_void_p), c_int] num_boxes = lib.num_boxes num_boxes.argtypes = [c_void_p] num_boxes.restype = c_int make_probs = lib.make_probs make_probs.argtypes = [c_void_p] make_probs.restype = POINTER(POINTER(c_float)) detect = lib.network_predict detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))] reset_rnn = lib.reset_rnn reset_rnn.argtypes = [c_void_p] load_net = lib.load_network load_net.argtypes = [c_char_p, c_char_p, c_int] load_net.restype = c_void_p free_image = lib.free_image free_image.argtypes = [IMAGE] letterbox_image = lib.letterbox_image letterbox_image.argtypes = [IMAGE, c_int, c_int] letterbox_image.restype = IMAGE load_meta = lib.get_metadata lib.get_metadata.argtypes = [c_char_p] lib.get_metadata.restype = METADATA load_image = lib.load_image_color load_image.argtypes = [c_char_p, c_int, c_int] load_image.restype = IMAGE rgbgr_image = lib.rgbgr_image rgbgr_image.argtypes = [IMAGE] predict_image = lib.network_predict_image predict_image.argtypes = [c_void_p, IMAGE] predict_image.restype = POINTER(c_float) network_detect = lib.network_detect network_detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))] import numpy def array_to_image(arr): arr = arr.copy() arr = arr.transpose(2,0,1) c = arr.shape[0] h = arr.shape[1] w = arr.shape[2] arr = (arr.astype(numpy.float32)/255.0).flatten() data = c_array(c_float, arr) im = IMAGE(w,h,c,data) return im def classify(net, meta, im): out = predict_image(net, im) res = [] for i in range(meta.classes): res.append((meta.names[i], out[i])) res = sorted(res, key=lambda x: -x[1]) return res def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): if type(image) == numpy.ndarray: im = array_to_image(image) else: im = load_image(image, 0, 0) boxes = make_boxes(net) probs = make_probs(net) num = num_boxes(net) network_detect(net, im, thresh, hier_thresh, nms, boxes, probs) res = [] for j in range(num): for i in range(meta.classes): if probs[j][i] > 0: res.append((meta.names[i], probs[j][i], (boxes[j].x, boxes[j].y, boxes[j].w, boxes[j].h))) res = sorted(res, key=lambda x: -x[1]) if type(image) != numpy.ndarray: free_image(im) free_ptrs(cast(probs, POINTER(c_void_p)), num) return res if __name__ == "__main__": #net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0) #im = load_image("data/wolf.jpg", 0, 0) #meta = load_meta("cfg/imagenet1k.data") #r = classify(net, meta, im) #print r[:10] net = load_net("cfg/tiny-yolo.cfg", "tiny-yolo.weights", 0) meta = load_meta("cfg/coco.data") r = detect(net, meta, "data/dog.jpg") print(r)