#include "darknet.h" #include #include void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { int i; float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); printf("%d\n", ngpus); network **nets = calloc(ngpus, sizeof(network*)); srand(time(0)); int seed = rand(); for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = load_network(cfgfile, weightfile, clear); nets[i]->learning_rate *= ngpus; } srand(time(0)); network *net = nets[0]; int imgs = net->batch * net->subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 1); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; load_args args = {0}; args.w = net->w; args.h = net->h; args.threads = 32; args.classes = classes; args.min = net->min_ratio*net->w; args.max = net->max_ratio*net->w; args.angle = net->angle; args.aspect = net->aspect; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; args.size = net->w; args.paths = paths; args.n = imgs; args.m = N; args.type = REGRESSION_DATA; data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); free_data(train); if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); } void predict_regressor(char *cfgfile, char *weightfile, char *filename) { network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image sized = letterbox_image(im, net->w, net->h); float *X = sized.data; time=clock(); float *predictions = network_predict(net, X); printf("Predicted: %f\n", predictions[0]); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); free_image(im); free_image(sized); if (filename) break; } } void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) { #ifdef OPENCV printf("Regressor Demo\n"); network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); CvCapture * cap; if(filename){ cap = cvCaptureFromFile(filename); }else{ cap = cvCaptureFromCAM(cam_index); } list *options = read_data_cfg(datacfg); int classes = option_find_int(options, "classes", 1); char *name_list = option_find_str(options, "names", 0); char **names = get_labels(name_list); if(!cap) error("Couldn't connect to webcam.\n"); cvNamedWindow("Regressor", CV_WINDOW_NORMAL); cvResizeWindow("Regressor", 512, 512); float fps = 0; while(1){ struct timeval tval_before, tval_after, tval_result; gettimeofday(&tval_before, NULL); image in = get_image_from_stream(cap); image crop = center_crop_image(in, net->w, net->h); grayscale_image_3c(crop); show_image(crop, "Regressor"); float *predictions = network_predict(net, crop.data); printf("\033[2J"); printf("\033[1;1H"); printf("\nFPS:%.0f\n",fps); int i; for(i = 0; i < classes; ++i){ printf("%s: %f\n", names[i], predictions[i]); } free_image(in); free_image(crop); cvWaitKey(10); gettimeofday(&tval_after, NULL); timersub(&tval_after, &tval_before, &tval_result); float curr = 1000000.f/((long int)tval_result.tv_usec); fps = .9*fps + .1*curr; } #endif } void run_regressor(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int cam_index = find_int_arg(argc, argv, "-c", 0); int clear = find_arg(argc, argv, "-clear"); char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; if(0==strcmp(argv[2], "test")) predict_regressor(data, cfg, weights); else if(0==strcmp(argv[2], "train")) train_regressor(data, cfg, weights, gpus, ngpus, clear); else if(0==strcmp(argv[2], "demo")) demo_regressor(data, cfg, weights, cam_index, filename); }