#include #include "network.h" #include "image.h" #include "data.h" #include "utils.h" #include "connected_layer.h" #include "convolutional_layer.h" #include "maxpool_layer.h" #include "softmax_layer.h" network make_network(int n) { network net; net.n = n; net.layers = calloc(net.n, sizeof(void *)); net.types = calloc(net.n, sizeof(LAYER_TYPE)); return net; } void forward_network(network net, double *input) { int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; forward_convolutional_layer(layer, input); input = layer.output; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; forward_connected_layer(layer, input); input = layer.output; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; forward_softmax_layer(layer, input); input = layer.output; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; forward_maxpool_layer(layer, input); input = layer.output; } } } void update_network(network net, double step) { int i; for(i = 0; i < net.n; ++i){ if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; update_convolutional_layer(layer, step, 0.9, .01); } else if(net.types[i] == MAXPOOL){ //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; } else if(net.types[i] == SOFTMAX){ //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; update_connected_layer(layer, step, .9, 0); } } } double *get_network_output_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.output; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.output; } return 0; } double *get_network_output(network net) { return get_network_output_layer(net, net.n-1); } double *get_network_delta_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.delta; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.delta; } return 0; } double *get_network_delta(network net) { return get_network_delta_layer(net, net.n-1); } void learn_network(network net, double *input) { int i; double *prev_input; double *prev_delta; for(i = net.n-1; i >= 0; --i){ if(i == 0){ prev_input = input; prev_delta = 0; }else{ prev_input = get_network_output_layer(net, i-1); prev_delta = get_network_delta_layer(net, i-1); } if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; learn_convolutional_layer(layer, prev_input); if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; learn_connected_layer(layer, prev_input); if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); } } } void train_network_batch(network net, batch b) { int i,j; int k = get_network_output_size(net); int correct = 0; for(i = 0; i < b.n; ++i){ show_image(b.images[i], "Input"); forward_network(net, b.images[i].data); image o = get_network_image(net); if(o.h) show_image_collapsed(o, "Output"); double *output = get_network_output(net); double *delta = get_network_delta(net); int max_k = 0; double max = 0; for(j = 0; j < k; ++j){ delta[j] = b.truth[i][j]-output[j]; if(output[j] > max) { max = output[j]; max_k = j; } } if(b.truth[i][max_k]) ++correct; printf("%f\n", (double)correct/(i+1)); learn_network(net, b.images[i].data); update_network(net, .001); if(i%100 == 0){ visualize_network(net); cvWaitKey(100); } } visualize_network(net); print_network(net); cvWaitKey(100); printf("Accuracy: %f\n", (double)correct/b.n); } int get_network_output_size_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; image output = get_convolutional_image(layer); return output.h*output.w*output.c; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; image output = get_maxpool_image(layer); return output.h*output.w*output.c; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; return layer.outputs; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; return layer.inputs; } return 0; } int get_network_output_size(network net) { int i = net.n-1; return get_network_output_size_layer(net, i); } image get_network_image_layer(network net, int i) { if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; return get_convolutional_image(layer); } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; return get_maxpool_image(layer); } return make_empty_image(0,0,0); } image get_network_image(network net) { int i; for(i = net.n-1; i >= 0; --i){ image m = get_network_image_layer(net, i); if(m.h != 0) return m; } return make_empty_image(0,0,0); } void visualize_network(network net) { int i; char buff[256]; for(i = 0; i < net.n; ++i){ sprintf(buff, "Layer %d", i); if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; visualize_convolutional_filters(layer, buff); } } } void print_network(network net) { int i,j; for(i = 0; i < net.n; ++i){ double *output; int n = 0; if(net.types[i] == CONVOLUTIONAL){ convolutional_layer layer = *(convolutional_layer *)net.layers[i]; output = layer.output; image m = get_convolutional_image(layer); n = m.h*m.w*m.c; } else if(net.types[i] == MAXPOOL){ maxpool_layer layer = *(maxpool_layer *)net.layers[i]; output = layer.output; image m = get_maxpool_image(layer); n = m.h*m.w*m.c; } else if(net.types[i] == CONNECTED){ connected_layer layer = *(connected_layer *)net.layers[i]; output = layer.output; n = layer.outputs; } else if(net.types[i] == SOFTMAX){ softmax_layer layer = *(softmax_layer *)net.layers[i]; output = layer.output; n = layer.inputs; } double mean = mean_array(output, n); double vari = variance_array(output, n); printf("Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); if(n > 100) n = 100; for(j = 0; j < n; ++j) printf("%f, ", output[j]); if(n == 100)printf(".....\n"); printf("\n"); } }