#include "convolutional_layer.h" #include "utils.h" #include "mini_blas.h" #include image get_convolutional_image(convolutional_layer layer) { int h,w,c; h = layer.out_h; w = layer.out_w; c = layer.n; return float_to_image(h,w,c,layer.output); } image get_convolutional_delta(convolutional_layer layer) { int h,w,c; h = layer.out_h; w = layer.out_w; c = layer.n; return float_to_image(h,w,c,layer.delta); } convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation) { int i; int out_h,out_w; size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter... convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); layer->h = h; layer->w = w; layer->c = c; layer->n = n; layer->stride = stride; layer->size = size; layer->filters = calloc(c*n*size*size, sizeof(float)); layer->filter_updates = calloc(c*n*size*size, sizeof(float)); layer->filter_momentum = calloc(c*n*size*size, sizeof(float)); layer->biases = calloc(n, sizeof(float)); layer->bias_updates = calloc(n, sizeof(float)); layer->bias_momentum = calloc(n, sizeof(float)); float scale = 1./(size*size*c); for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()); for(i = 0; i < n; ++i){ //layer->biases[i] = rand_normal()*scale + scale; layer->biases[i] = 0; } out_h = (h-size)/stride + 1; out_w = (w-size)/stride + 1; layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); layer->output = calloc(out_h * out_w * n, sizeof(float)); layer->delta = calloc(out_h * out_w * n, sizeof(float)); layer->activation = activation; layer->out_h = out_h; layer->out_w = out_w; fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); srand(0); return layer; } void forward_convolutional_layer(const convolutional_layer layer, float *in) { int i; int m = layer.n; int k = layer.size*layer.size*layer.c; int n = ((layer.h-layer.size)/layer.stride + 1)* ((layer.w-layer.size)/layer.stride + 1); memset(layer.output, 0, m*n*sizeof(float)); float *a = layer.filters; float *b = layer.col_image; float *c = layer.output; im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); for(i = 0; i < m*n; ++i){ layer.output[i] = activate(layer.output[i], layer.activation); } //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n"); } void gradient_delta_convolutional_layer(convolutional_layer layer) { int i; for(i = 0; i < layer.out_h*layer.out_w*layer.n; ++i){ layer.delta[i] *= gradient(layer.output[i], layer.activation); } } void learn_bias_convolutional_layer(convolutional_layer layer) { int i,j; int size = layer.out_h*layer.out_w; for(i = 0; i < layer.n; ++i){ float sum = 0; for(j = 0; j < size; ++j){ sum += layer.delta[j+i*size]; } layer.bias_updates[i] += sum/size; } } void learn_convolutional_layer(convolutional_layer layer) { gradient_delta_convolutional_layer(layer); learn_bias_convolutional_layer(layer); int m = layer.n; int n = layer.size*layer.size*layer.c; int k = ((layer.h-layer.size)/layer.stride + 1)* ((layer.w-layer.size)/layer.stride + 1); float *a = layer.delta; float *b = layer.col_image; float *c = layer.filter_updates; gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); } void backward_convolutional_layer(convolutional_layer layer, float *delta) { int m = layer.size*layer.size*layer.c; int k = layer.n; int n = ((layer.h-layer.size)/layer.stride + 1)* ((layer.w-layer.size)/layer.stride + 1); float *a = layer.filters; float *b = layer.delta; float *c = layer.col_image; memset(c, 0, m*n*sizeof(float)); gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); memset(delta, 0, layer.h*layer.w*layer.c*sizeof(float)); col2im_cpu(c, layer.c, layer.h, layer.w, layer.size, layer.stride, delta); } void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) { int i; int size = layer.size*layer.size*layer.c*layer.n; for(i = 0; i < layer.n; ++i){ layer.biases[i] += step*layer.bias_updates[i]; layer.bias_updates[i] *= momentum; } for(i = 0; i < size; ++i){ layer.filters[i] += step*(layer.filter_updates[i] - decay*layer.filters[i]); layer.filter_updates[i] *= momentum; } } /* void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta) { image in_delta = float_to_image(layer.h, layer.w, layer.c, delta); image out_delta = get_convolutional_delta(layer); int i,j; for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } zero_image(in_delta); upsample_image(out_delta, layer.stride, layer.upsampled); for(j = 0; j < in_delta.c; ++j){ for(i = 0; i < layer.n; ++i){ two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge); } } for(i = 0; i < layer.n; ++i){ rotate_image(layer.kernels[i]); } } void learn_convolutional_layer(convolutional_layer layer, float *input) { int i; image in_image = float_to_image(layer.h, layer.w, layer.c, input); image out_delta = get_convolutional_delta(layer); gradient_delta_convolutional_layer(layer); for(i = 0; i < layer.n; ++i){ kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); layer.bias_updates[i] += avg_image_layer(out_delta, i); } } void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) { int i,j; for(i = 0; i < layer.n; ++i){ layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; layer.biases[i] += layer.bias_momentum[i]; layer.bias_updates[i] = 0; int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; for(j = 0; j < pixels; ++j){ layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) + momentum*layer.kernel_momentum[i].data[j]; layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j]; } zero_image(layer.kernel_updates[i]); } } */ void test_convolutional_layer() { convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR); float input[] = {1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16}; float filter[] = {.5, 0, .3, 0 , 1, 0, .2 , 0, 1}; float delta[] = {1, 2, 3, 4}; float in_delta[] = {.5,1,.3,.6, 5,6,7,8, 9,10,11,12, 13,14,15,16}; l.filters = filter; forward_convolutional_layer(l, input); l.delta = delta; learn_convolutional_layer(l); image filter_updates = float_to_image(3,3,1,l.filter_updates); print_image(filter_updates); printf("Delta:\n"); backward_convolutional_layer(l, in_delta); pm(4,4,in_delta); } image get_convolutional_filter(convolutional_layer layer, int i) { int h = layer.size; int w = layer.size; int c = layer.c; return float_to_image(h,w,c,layer.filters+i*h*w*c); } void visualize_convolutional_layer(convolutional_layer layer, char *window) { int color = 1; int border = 1; int h,w,c; int size = layer.size; h = size; w = (size + border) * layer.n - border; c = layer.c; if(c != 3 || !color){ h = (h+border)*c - border; c = 1; } image filters = make_image(h,w,c); int i,j; for(i = 0; i < layer.n; ++i){ int w_offset = i*(size+border); image k = get_convolutional_filter(layer, i); //printf("%f ** ", layer.biases[i]); //print_image(k); image copy = copy_image(k); normalize_image(copy); for(j = 0; j < k.c; ++j){ //set_pixel(copy,0,0,j,layer.biases[i]); } if(c == 3 && color){ embed_image(copy, filters, 0, w_offset); } else{ for(j = 0; j < k.c; ++j){ int h_offset = j*(size+border); image layer = get_image_layer(k, j); embed_image(layer, filters, h_offset, w_offset); free_image(layer); } } free_image(copy); } image delta = get_convolutional_delta(layer); image dc = collapse_image_layers(delta, 1); char buff[256]; sprintf(buff, "%s: Delta", window); show_image(dc, buff); free_image(dc); show_image(filters, window); free_image(filters); }