#include #include #include #include #include "activation_layer.h" #include "activations.h" #include "avgpool_layer.h" #include "batchnorm_layer.h" #include "blas.h" #include "connected_layer.h" #include "deconvolutional_layer.h" #include "convolutional_layer.h" #include "cost_layer.h" #include "crnn_layer.h" #include "crop_layer.h" #include "detection_layer.h" #include "dropout_layer.h" #include "gru_layer.h" #include "list.h" #include "local_layer.h" #include "maxpool_layer.h" #include "normalization_layer.h" #include "option_list.h" #include "parser.h" #include "region_layer.h" #include "reorg_layer.h" #include "rnn_layer.h" #include "route_layer.h" #include "shortcut_layer.h" #include "softmax_layer.h" #include "lstm_layer.h" #include "utils.h" typedef struct{ char *type; list *options; }section; list *read_cfg(char *filename); LAYER_TYPE string_to_layer_type(char * type) { if (strcmp(type, "[shortcut]")==0) return SHORTCUT; if (strcmp(type, "[crop]")==0) return CROP; if (strcmp(type, "[cost]")==0) return COST; if (strcmp(type, "[detection]")==0) return DETECTION; if (strcmp(type, "[region]")==0) return REGION; if (strcmp(type, "[local]")==0) return LOCAL; if (strcmp(type, "[conv]")==0 || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; if (strcmp(type, "[deconv]")==0 || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL; if (strcmp(type, "[activation]")==0) return ACTIVE; if (strcmp(type, "[net]")==0 || strcmp(type, "[network]")==0) return NETWORK; if (strcmp(type, "[crnn]")==0) return CRNN; if (strcmp(type, "[gru]")==0) return GRU; if (strcmp(type, "[lstm]") == 0) return LSTM; if (strcmp(type, "[rnn]")==0) return RNN; if (strcmp(type, "[conn]")==0 || strcmp(type, "[connected]")==0) return CONNECTED; if (strcmp(type, "[max]")==0 || strcmp(type, "[maxpool]")==0) return MAXPOOL; if (strcmp(type, "[reorg]")==0) return REORG; if (strcmp(type, "[avg]")==0 || strcmp(type, "[avgpool]")==0) return AVGPOOL; if (strcmp(type, "[dropout]")==0) return DROPOUT; if (strcmp(type, "[lrn]")==0 || strcmp(type, "[normalization]")==0) return NORMALIZATION; if (strcmp(type, "[batchnorm]")==0) return BATCHNORM; if (strcmp(type, "[soft]")==0 || strcmp(type, "[softmax]")==0) return SOFTMAX; if (strcmp(type, "[route]")==0) return ROUTE; return BLANK; } void free_section(section *s) { free(s->type); node *n = s->options->front; while(n){ kvp *pair = (kvp *)n->val; free(pair->key); free(pair); node *next = n->next; free(n); n = next; } free(s->options); free(s); } void parse_data(char *data, float *a, int n) { int i; if(!data) return; char *curr = data; char *next = data; int done = 0; for(i = 0; i < n && !done; ++i){ while(*++next !='\0' && *next != ','); if(*next == '\0') done = 1; *next = '\0'; sscanf(curr, "%g", &a[i]); curr = next+1; } } typedef struct size_params{ int batch; int inputs; int h; int w; int c; int index; int time_steps; network net; } size_params; local_layer parse_local(list *options, size_params params) { int n = option_find_int(options, "filters",1); int size = option_find_int(options, "size",1); int stride = option_find_int(options, "stride",1); int pad = option_find_int(options, "pad",0); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before local layer must output image."); local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation); return layer; } layer parse_deconvolutional(list *options, size_params params) { int n = option_find_int(options, "filters",1); int size = option_find_int(options, "size",1); int stride = option_find_int(options, "stride",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before deconvolutional layer must output image."); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); int pad = option_find_int_quiet(options, "pad",0); int padding = option_find_int_quiet(options, "padding",0); if(pad) padding = size/2; layer l = make_deconvolutional_layer(batch,h,w,c,n,size,stride,padding, activation, batch_normalize, params.net.adam); return l; } convolutional_layer parse_convolutional(list *options, size_params params) { int n = option_find_int(options, "filters",1); int size = option_find_int(options, "size",1); int stride = option_find_int(options, "stride",1); int pad = option_find_int_quiet(options, "pad",0); int padding = option_find_int_quiet(options, "padding",0); if(pad) padding = size/2; char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before convolutional layer must output image."); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); int binary = option_find_int_quiet(options, "binary", 0); int xnor = option_find_int_quiet(options, "xnor", 0); convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor, params.net.adam); layer.flipped = option_find_int_quiet(options, "flipped", 0); layer.dot = option_find_float_quiet(options, "dot", 0); return layer; } layer parse_crnn(list *options, size_params params) { int output_filters = option_find_int(options, "output_filters",1); int hidden_filters = option_find_int(options, "hidden_filters",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize); l.shortcut = option_find_int_quiet(options, "shortcut", 0); return l; } layer parse_rnn(list *options, size_params params) { int output = option_find_int(options, "output",1); int hidden = option_find_int(options, "hidden",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); int logistic = option_find_int_quiet(options, "logistic", 0); layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic, params.net.adam); l.shortcut = option_find_int_quiet(options, "shortcut", 0); return l; } layer parse_gru(list *options, size_params params) { int output = option_find_int(options, "output",1); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize, params.net.adam); l.tanh = option_find_int_quiet(options, "tanh", 0); return l; } layer parse_lstm(list *options, size_params params) { int output = option_find_int(options, "output", 1); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); layer l = make_lstm_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize, params.net.adam); return l; } layer parse_connected(list *options, size_params params) { int output = option_find_int(options, "output",1); char *activation_s = option_find_str(options, "activation", "logistic"); ACTIVATION activation = get_activation(activation_s); int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); layer l = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize, params.net.adam); return l; } softmax_layer parse_softmax(list *options, size_params params) { int groups = option_find_int_quiet(options, "groups",1); softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); layer.temperature = option_find_float_quiet(options, "temperature", 1); char *tree_file = option_find_str(options, "tree", 0); if (tree_file) layer.softmax_tree = read_tree(tree_file); layer.w = params.w; layer.h = params.h; layer.c = params.c; layer.spatial = option_find_float_quiet(options, "spatial", 0); return layer; } layer parse_region(list *options, size_params params) { int coords = option_find_int(options, "coords", 4); int classes = option_find_int(options, "classes", 20); int num = option_find_int(options, "num", 1); layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords); assert(l.outputs == params.inputs); l.log = option_find_int_quiet(options, "log", 0); l.sqrt = option_find_int_quiet(options, "sqrt", 0); l.softmax = option_find_int(options, "softmax", 0); l.background = option_find_int_quiet(options, "background", 0); l.max_boxes = option_find_int_quiet(options, "max",30); l.jitter = option_find_float(options, "jitter", .2); l.rescore = option_find_int_quiet(options, "rescore",0); l.thresh = option_find_float(options, "thresh", .5); l.classfix = option_find_int_quiet(options, "classfix", 0); l.absolute = option_find_int_quiet(options, "absolute", 0); l.random = option_find_int_quiet(options, "random", 0); l.coord_scale = option_find_float(options, "coord_scale", 1); l.object_scale = option_find_float(options, "object_scale", 1); l.noobject_scale = option_find_float(options, "noobject_scale", 1); l.class_scale = option_find_float(options, "class_scale", 1); l.bias_match = option_find_int_quiet(options, "bias_match",0); char *tree_file = option_find_str(options, "tree", 0); if (tree_file) l.softmax_tree = read_tree(tree_file); char *map_file = option_find_str(options, "map", 0); if (map_file) l.map = read_map(map_file); char *a = option_find_str(options, "anchors", 0); if(a){ int len = strlen(a); int n = 1; int i; for(i = 0; i < len; ++i){ if (a[i] == ',') ++n; } for(i = 0; i < n; ++i){ float bias = atof(a); l.biases[i] = bias; a = strchr(a, ',')+1; } } return l; } detection_layer parse_detection(list *options, size_params params) { int coords = option_find_int(options, "coords", 1); int classes = option_find_int(options, "classes", 1); int rescore = option_find_int(options, "rescore", 0); int num = option_find_int(options, "num", 1); int side = option_find_int(options, "side", 7); detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore); layer.softmax = option_find_int(options, "softmax", 0); layer.sqrt = option_find_int(options, "sqrt", 0); layer.max_boxes = option_find_int_quiet(options, "max",30); layer.coord_scale = option_find_float(options, "coord_scale", 1); layer.forced = option_find_int(options, "forced", 0); layer.object_scale = option_find_float(options, "object_scale", 1); layer.noobject_scale = option_find_float(options, "noobject_scale", 1); layer.class_scale = option_find_float(options, "class_scale", 1); layer.jitter = option_find_float(options, "jitter", .2); layer.random = option_find_int_quiet(options, "random", 0); layer.reorg = option_find_int_quiet(options, "reorg", 0); return layer; } cost_layer parse_cost(list *options, size_params params) { char *type_s = option_find_str(options, "type", "sse"); COST_TYPE type = get_cost_type(type_s); float scale = option_find_float_quiet(options, "scale",1); cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale); layer.ratio = option_find_float_quiet(options, "ratio",0); layer.thresh = option_find_float_quiet(options, "thresh",0); return layer; } crop_layer parse_crop(list *options, size_params params) { int crop_height = option_find_int(options, "crop_height",1); int crop_width = option_find_int(options, "crop_width",1); int flip = option_find_int(options, "flip",0); float angle = option_find_float(options, "angle",0); float saturation = option_find_float(options, "saturation",1); float exposure = option_find_float(options, "exposure",1); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before crop layer must output image."); int noadjust = option_find_int_quiet(options, "noadjust",0); crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); l.shift = option_find_float(options, "shift", 0); l.noadjust = noadjust; return l; } layer parse_reorg(list *options, size_params params) { int stride = option_find_int(options, "stride",1); int reverse = option_find_int_quiet(options, "reverse",0); int flatten = option_find_int_quiet(options, "flatten",0); int extra = option_find_int_quiet(options, "extra",0); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before reorg layer must output image."); layer layer = make_reorg_layer(batch,w,h,c,stride,reverse, flatten, extra); return layer; } maxpool_layer parse_maxpool(list *options, size_params params) { int stride = option_find_int(options, "stride",1); int size = option_find_int(options, "size",stride); int padding = option_find_int_quiet(options, "padding", (size-1)/2); int batch,h,w,c; h = params.h; w = params.w; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before maxpool layer must output image."); maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride,padding); return layer; } avgpool_layer parse_avgpool(list *options, size_params params) { int batch,w,h,c; w = params.w; h = params.h; c = params.c; batch=params.batch; if(!(h && w && c)) error("Layer before avgpool layer must output image."); avgpool_layer layer = make_avgpool_layer(batch,w,h,c); return layer; } dropout_layer parse_dropout(list *options, size_params params) { float probability = option_find_float(options, "probability", .5); dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); layer.out_w = params.w; layer.out_h = params.h; layer.out_c = params.c; return layer; } layer parse_normalization(list *options, size_params params) { float alpha = option_find_float(options, "alpha", .0001); float beta = option_find_float(options, "beta" , .75); float kappa = option_find_float(options, "kappa", 1); int size = option_find_int(options, "size", 5); layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); return l; } layer parse_batchnorm(list *options, size_params params) { layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c); return l; } layer parse_shortcut(list *options, size_params params, network net) { char *l = option_find(options, "from"); int index = atoi(l); if(index < 0) index = params.index + index; int batch = params.batch; layer from = net.layers[index]; layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); char *activation_s = option_find_str(options, "activation", "linear"); ACTIVATION activation = get_activation(activation_s); s.activation = activation; return s; } layer parse_activation(list *options, size_params params) { char *activation_s = option_find_str(options, "activation", "linear"); ACTIVATION activation = get_activation(activation_s); layer l = make_activation_layer(params.batch, params.inputs, activation); l.out_h = params.h; l.out_w = params.w; l.out_c = params.c; l.h = params.h; l.w = params.w; l.c = params.c; return l; } route_layer parse_route(list *options, size_params params, network net) { char *l = option_find(options, "layers"); int len = strlen(l); if(!l) error("Route Layer must specify input layers"); int n = 1; int i; for(i = 0; i < len; ++i){ if (l[i] == ',') ++n; } int *layers = calloc(n, sizeof(int)); int *sizes = calloc(n, sizeof(int)); for(i = 0; i < n; ++i){ int index = atoi(l); l = strchr(l, ',')+1; if(index < 0) index = params.index + index; layers[i] = index; sizes[i] = net.layers[index].outputs; } int batch = params.batch; route_layer layer = make_route_layer(batch, n, layers, sizes); convolutional_layer first = net.layers[layers[0]]; layer.out_w = first.out_w; layer.out_h = first.out_h; layer.out_c = first.out_c; for(i = 1; i < n; ++i){ int index = layers[i]; convolutional_layer next = net.layers[index]; if(next.out_w == first.out_w && next.out_h == first.out_h){ layer.out_c += next.out_c; }else{ layer.out_h = layer.out_w = layer.out_c = 0; } } return layer; } learning_rate_policy get_policy(char *s) { if (strcmp(s, "random")==0) return RANDOM; if (strcmp(s, "poly")==0) return POLY; if (strcmp(s, "constant")==0) return CONSTANT; if (strcmp(s, "step")==0) return STEP; if (strcmp(s, "exp")==0) return EXP; if (strcmp(s, "sigmoid")==0) return SIG; if (strcmp(s, "steps")==0) return STEPS; fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); return CONSTANT; } void parse_net_options(list *options, network *net) { net->batch = option_find_int(options, "batch",1); net->learning_rate = option_find_float(options, "learning_rate", .001); net->momentum = option_find_float(options, "momentum", .9); net->decay = option_find_float(options, "decay", .0001); int subdivs = option_find_int(options, "subdivisions",1); net->time_steps = option_find_int_quiet(options, "time_steps",1); net->notruth = option_find_int_quiet(options, "notruth",0); net->batch /= subdivs; net->batch *= net->time_steps; net->subdivisions = subdivs; net->adam = option_find_int_quiet(options, "adam", 0); if(net->adam){ net->B1 = option_find_float(options, "B1", .9); net->B2 = option_find_float(options, "B2", .999); net->eps = option_find_float(options, "eps", .0000001); } net->h = option_find_int_quiet(options, "height",0); net->w = option_find_int_quiet(options, "width",0); net->c = option_find_int_quiet(options, "channels",0); net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); net->min_crop = option_find_int_quiet(options, "min_crop",net->w); net->center = option_find_int_quiet(options, "center",0); net->angle = option_find_float_quiet(options, "angle", 0); net->aspect = option_find_float_quiet(options, "aspect", 1); net->saturation = option_find_float_quiet(options, "saturation", 1); net->exposure = option_find_float_quiet(options, "exposure", 1); net->hue = option_find_float_quiet(options, "hue", 0); if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); char *policy_s = option_find_str(options, "policy", "constant"); net->policy = get_policy(policy_s); net->burn_in = option_find_int_quiet(options, "burn_in", 0); net->power = option_find_float_quiet(options, "power", 4); if(net->policy == STEP){ net->step = option_find_int(options, "step", 1); net->scale = option_find_float(options, "scale", 1); } else if (net->policy == STEPS){ char *l = option_find(options, "steps"); char *p = option_find(options, "scales"); if(!l || !p) error("STEPS policy must have steps and scales in cfg file"); int len = strlen(l); int n = 1; int i; for(i = 0; i < len; ++i){ if (l[i] == ',') ++n; } int *steps = calloc(n, sizeof(int)); float *scales = calloc(n, sizeof(float)); for(i = 0; i < n; ++i){ int step = atoi(l); float scale = atof(p); l = strchr(l, ',')+1; p = strchr(p, ',')+1; steps[i] = step; scales[i] = scale; } net->scales = scales; net->steps = steps; net->num_steps = n; } else if (net->policy == EXP){ net->gamma = option_find_float(options, "gamma", 1); } else if (net->policy == SIG){ net->gamma = option_find_float(options, "gamma", 1); net->step = option_find_int(options, "step", 1); } else if (net->policy == POLY || net->policy == RANDOM){ } net->max_batches = option_find_int(options, "max_batches", 0); } int is_network(section *s) { return (strcmp(s->type, "[net]")==0 || strcmp(s->type, "[network]")==0); } network parse_network_cfg(char *filename) { list *sections = read_cfg(filename); node *n = sections->front; if(!n) error("Config file has no sections"); network net = make_network(sections->size - 1); net.gpu_index = gpu_index; size_params params; section *s = (section *)n->val; list *options = s->options; if(!is_network(s)) error("First section must be [net] or [network]"); parse_net_options(options, &net); params.h = net.h; params.w = net.w; params.c = net.c; params.inputs = net.inputs; params.batch = net.batch; params.time_steps = net.time_steps; params.net = net; size_t workspace_size = 0; n = n->next; int count = 0; free_section(s); fprintf(stderr, "layer filters size input output\n"); while(n){ params.index = count; fprintf(stderr, "%5d ", count); s = (section *)n->val; options = s->options; layer l = {0}; LAYER_TYPE lt = string_to_layer_type(s->type); if(lt == CONVOLUTIONAL){ l = parse_convolutional(options, params); }else if(lt == DECONVOLUTIONAL){ l = parse_deconvolutional(options, params); }else if(lt == LOCAL){ l = parse_local(options, params); }else if(lt == ACTIVE){ l = parse_activation(options, params); }else if(lt == RNN){ l = parse_rnn(options, params); }else if(lt == GRU){ l = parse_gru(options, params); }else if (lt == LSTM) { l = parse_lstm(options, params); }else if(lt == CRNN){ l = parse_crnn(options, params); }else if(lt == CONNECTED){ l = parse_connected(options, params); }else if(lt == CROP){ l = parse_crop(options, params); }else if(lt == COST){ l = parse_cost(options, params); }else if(lt == REGION){ l = parse_region(options, params); }else if(lt == DETECTION){ l = parse_detection(options, params); }else if(lt == SOFTMAX){ l = parse_softmax(options, params); net.hierarchy = l.softmax_tree; }else if(lt == NORMALIZATION){ l = parse_normalization(options, params); }else if(lt == BATCHNORM){ l = parse_batchnorm(options, params); }else if(lt == MAXPOOL){ l = parse_maxpool(options, params); }else if(lt == REORG){ l = parse_reorg(options, params); }else if(lt == AVGPOOL){ l = parse_avgpool(options, params); }else if(lt == ROUTE){ l = parse_route(options, params, net); }else if(lt == SHORTCUT){ l = parse_shortcut(options, params, net); }else if(lt == DROPOUT){ l = parse_dropout(options, params); l.output = net.layers[count-1].output; l.delta = net.layers[count-1].delta; #ifdef GPU l.output_gpu = net.layers[count-1].output_gpu; l.delta_gpu = net.layers[count-1].delta_gpu; #endif }else{ fprintf(stderr, "Type not recognized: %s\n", s->type); } l.truth = option_find_int_quiet(options, "truth", 0); l.onlyforward = option_find_int_quiet(options, "onlyforward", 0); l.stopbackward = option_find_int_quiet(options, "stopbackward", 0); l.dontload = option_find_int_quiet(options, "dontload", 0); l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1); l.smooth = option_find_float_quiet(options, "smooth", 0); option_unused(options); net.layers[count] = l; if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; free_section(s); n = n->next; ++count; if(n){ params.h = l.out_h; params.w = l.out_w; params.c = l.out_c; params.inputs = l.outputs; } } free_list(sections); layer out = get_network_output_layer(net); net.outputs = out.outputs; net.truths = out.outputs; if(net.layers[net.n-1].truths) net.truths = net.layers[net.n-1].truths; net.output = out.output; net.input = calloc(net.inputs*net.batch, sizeof(float)); net.truth = calloc(net.truths*net.batch, sizeof(float)); #ifdef GPU net.output_gpu = out.output_gpu; net.input_gpu = cuda_make_array(net.input, net.inputs*net.batch); net.truth_gpu = cuda_make_array(net.truth, net.truths*net.batch); #endif if(workspace_size){ //printf("%ld\n", workspace_size); #ifdef GPU if(gpu_index >= 0){ net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); }else { net.workspace = calloc(1, workspace_size); } #else net.workspace = calloc(1, workspace_size); #endif } return net; } list *read_cfg(char *filename) { FILE *file = fopen(filename, "r"); if(file == 0) file_error(filename); char *line; int nu = 0; list *options = make_list(); section *current = 0; while((line=fgetl(file)) != 0){ ++ nu; strip(line); switch(line[0]){ case '[': current = malloc(sizeof(section)); list_insert(options, current); current->options = make_list(); current->type = line; break; case '\0': case '#': case ';': free(line); break; default: if(!read_option(line, current->options)){ fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); free(line); } break; } } fclose(file); return options; } void save_convolutional_weights_binary(layer l, FILE *fp) { #ifdef GPU if(gpu_index >= 0){ pull_convolutional_layer(l); } #endif binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); int size = l.c*l.size*l.size; int i, j, k; fwrite(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize){ fwrite(l.scales, sizeof(float), l.n, fp); fwrite(l.rolling_mean, sizeof(float), l.n, fp); fwrite(l.rolling_variance, sizeof(float), l.n, fp); } for(i = 0; i < l.n; ++i){ float mean = l.binary_weights[i*size]; if(mean < 0) mean = -mean; fwrite(&mean, sizeof(float), 1, fp); for(j = 0; j < size/8; ++j){ int index = i*size + j*8; unsigned char c = 0; for(k = 0; k < 8; ++k){ if (j*8 + k >= size) break; if (l.binary_weights[index + k] > 0) c = (c | 1<= 0){ pull_convolutional_layer(l); } #endif int num = l.n*l.c*l.size*l.size; fwrite(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize){ fwrite(l.scales, sizeof(float), l.n, fp); fwrite(l.rolling_mean, sizeof(float), l.n, fp); fwrite(l.rolling_variance, sizeof(float), l.n, fp); } fwrite(l.weights, sizeof(float), num, fp); } void save_batchnorm_weights(layer l, FILE *fp) { #ifdef GPU if(gpu_index >= 0){ pull_batchnorm_layer(l); } #endif fwrite(l.scales, sizeof(float), l.c, fp); fwrite(l.rolling_mean, sizeof(float), l.c, fp); fwrite(l.rolling_variance, sizeof(float), l.c, fp); } void save_connected_weights(layer l, FILE *fp) { #ifdef GPU if(gpu_index >= 0){ pull_connected_layer(l); } #endif fwrite(l.biases, sizeof(float), l.outputs, fp); fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); if (l.batch_normalize){ fwrite(l.scales, sizeof(float), l.outputs, fp); fwrite(l.rolling_mean, sizeof(float), l.outputs, fp); fwrite(l.rolling_variance, sizeof(float), l.outputs, fp); } } void save_weights_upto(network net, char *filename, int cutoff) { #ifdef GPU if(net.gpu_index >= 0){ cuda_set_device(net.gpu_index); } #endif fprintf(stderr, "Saving weights to %s\n", filename); FILE *fp = fopen(filename, "wb"); if(!fp) file_error(filename); int major = 0; int minor = 2; int revision = 0; fwrite(&major, sizeof(int), 1, fp); fwrite(&minor, sizeof(int), 1, fp); fwrite(&revision, sizeof(int), 1, fp); fwrite(net.seen, sizeof(size_t), 1, fp); int i; for(i = 0; i < net.n && i < cutoff; ++i){ layer l = net.layers[i]; if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){ save_convolutional_weights(l, fp); } if(l.type == CONNECTED){ save_connected_weights(l, fp); } if(l.type == BATCHNORM){ save_batchnorm_weights(l, fp); } if(l.type == RNN){ save_connected_weights(*(l.input_layer), fp); save_connected_weights(*(l.self_layer), fp); save_connected_weights(*(l.output_layer), fp); } if (l.type == LSTM) { save_connected_weights(*(l.wi), fp); save_connected_weights(*(l.wf), fp); save_connected_weights(*(l.wo), fp); save_connected_weights(*(l.wg), fp); save_connected_weights(*(l.ui), fp); save_connected_weights(*(l.uf), fp); save_connected_weights(*(l.uo), fp); save_connected_weights(*(l.ug), fp); } if (l.type == GRU) { save_connected_weights(*(l.wz), fp); save_connected_weights(*(l.wr), fp); save_connected_weights(*(l.wh), fp); save_connected_weights(*(l.uz), fp); save_connected_weights(*(l.ur), fp); save_connected_weights(*(l.uh), fp); } if(l.type == CRNN){ save_convolutional_weights(*(l.input_layer), fp); save_convolutional_weights(*(l.self_layer), fp); save_convolutional_weights(*(l.output_layer), fp); } if(l.type == LOCAL){ #ifdef GPU if(gpu_index >= 0){ pull_local_layer(l); } #endif int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; fwrite(l.biases, sizeof(float), l.outputs, fp); fwrite(l.weights, sizeof(float), size, fp); } } fclose(fp); } void save_weights(network net, char *filename) { save_weights_upto(net, filename, net.n); } void transpose_matrix(float *a, int rows, int cols) { float *transpose = calloc(rows*cols, sizeof(float)); int x, y; for(x = 0; x < rows; ++x){ for(y = 0; y < cols; ++y){ transpose[y*rows + x] = a[x*cols + y]; } } memcpy(a, transpose, rows*cols*sizeof(float)); free(transpose); } void load_connected_weights(layer l, FILE *fp, int transpose) { fread(l.biases, sizeof(float), l.outputs, fp); fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); if(transpose){ transpose_matrix(l.weights, l.inputs, l.outputs); } //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); if (l.batch_normalize && (!l.dontloadscales)){ fread(l.scales, sizeof(float), l.outputs, fp); fread(l.rolling_mean, sizeof(float), l.outputs, fp); fread(l.rolling_variance, sizeof(float), l.outputs, fp); //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); } #ifdef GPU if(gpu_index >= 0){ push_connected_layer(l); } #endif } void load_batchnorm_weights(layer l, FILE *fp) { fread(l.scales, sizeof(float), l.c, fp); fread(l.rolling_mean, sizeof(float), l.c, fp); fread(l.rolling_variance, sizeof(float), l.c, fp); #ifdef GPU if(gpu_index >= 0){ push_batchnorm_layer(l); } #endif } void load_convolutional_weights_binary(layer l, FILE *fp) { fread(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize && (!l.dontloadscales)){ fread(l.scales, sizeof(float), l.n, fp); fread(l.rolling_mean, sizeof(float), l.n, fp); fread(l.rolling_variance, sizeof(float), l.n, fp); } int size = l.c*l.size*l.size; int i, j, k; for(i = 0; i < l.n; ++i){ float mean = 0; fread(&mean, sizeof(float), 1, fp); for(j = 0; j < size/8; ++j){ int index = i*size + j*8; unsigned char c = 0; fread(&c, sizeof(char), 1, fp); for(k = 0; k < 8; ++k){ if (j*8 + k >= size) break; l.weights[index + k] = (c & 1<= 0){ push_convolutional_layer(l); } #endif } void load_convolutional_weights(layer l, FILE *fp) { if(l.binary){ //load_convolutional_weights_binary(l, fp); //return; } int num = l.n*l.c*l.size*l.size; fread(l.biases, sizeof(float), l.n, fp); if (l.batch_normalize && (!l.dontloadscales)){ fread(l.scales, sizeof(float), l.n, fp); fread(l.rolling_mean, sizeof(float), l.n, fp); fread(l.rolling_variance, sizeof(float), l.n, fp); if(0){ int i; for(i = 0; i < l.n; ++i){ printf("%g, ", l.rolling_mean[i]); } printf("\n"); for(i = 0; i < l.n; ++i){ printf("%g, ", l.rolling_variance[i]); } printf("\n"); } if(0){ fill_cpu(l.n, 0, l.rolling_mean, 1); fill_cpu(l.n, 0, l.rolling_variance, 1); } } fread(l.weights, sizeof(float), num, fp); //if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1); if (l.flipped) { transpose_matrix(l.weights, l.c*l.size*l.size, l.n); } //if (l.binary) binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.weights); #ifdef GPU if(gpu_index >= 0){ push_convolutional_layer(l); } #endif } void load_weights_upto(network *net, char *filename, int start, int cutoff) { #ifdef GPU if(net->gpu_index >= 0){ cuda_set_device(net->gpu_index); } #endif fprintf(stderr, "Loading weights from %s...", filename); fflush(stdout); FILE *fp = fopen(filename, "rb"); if(!fp) file_error(filename); int major; int minor; int revision; fread(&major, sizeof(int), 1, fp); fread(&minor, sizeof(int), 1, fp); fread(&revision, sizeof(int), 1, fp); if ((major*10 + minor) >= 2){ fread(net->seen, sizeof(size_t), 1, fp); } else { int iseen = 0; fread(&iseen, sizeof(int), 1, fp); *net->seen = iseen; } int transpose = (major > 1000) || (minor > 1000); int i; for(i = start; i < net->n && i < cutoff; ++i){ layer l = net->layers[i]; if (l.dontload) continue; if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){ load_convolutional_weights(l, fp); } if(l.type == CONNECTED){ load_connected_weights(l, fp, transpose); } if(l.type == BATCHNORM){ load_batchnorm_weights(l, fp); } if(l.type == CRNN){ load_convolutional_weights(*(l.input_layer), fp); load_convolutional_weights(*(l.self_layer), fp); load_convolutional_weights(*(l.output_layer), fp); } if(l.type == RNN){ load_connected_weights(*(l.input_layer), fp, transpose); load_connected_weights(*(l.self_layer), fp, transpose); load_connected_weights(*(l.output_layer), fp, transpose); } if (l.type == LSTM) { load_connected_weights(*(l.wi), fp, transpose); load_connected_weights(*(l.wf), fp, transpose); load_connected_weights(*(l.wo), fp, transpose); load_connected_weights(*(l.wg), fp, transpose); load_connected_weights(*(l.ui), fp, transpose); load_connected_weights(*(l.uf), fp, transpose); load_connected_weights(*(l.uo), fp, transpose); load_connected_weights(*(l.ug), fp, transpose); } if (l.type == GRU) { load_connected_weights(*(l.wz), fp, transpose); load_connected_weights(*(l.wr), fp, transpose); load_connected_weights(*(l.wh), fp, transpose); load_connected_weights(*(l.uz), fp, transpose); load_connected_weights(*(l.ur), fp, transpose); load_connected_weights(*(l.uh), fp, transpose); } if(l.type == LOCAL){ int locations = l.out_w*l.out_h; int size = l.size*l.size*l.c*l.n*locations; fread(l.biases, sizeof(float), l.outputs, fp); fread(l.weights, sizeof(float), size, fp); #ifdef GPU if(gpu_index >= 0){ push_local_layer(l); } #endif } } fprintf(stderr, "Done!\n"); fclose(fp); } void load_weights(network *net, char *filename) { load_weights_upto(net, filename, 0, net->n); }