#include "cost_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" #include #include #include #include COST_TYPE get_cost_type(char *s) { if (strcmp(s, "sse")==0) return SSE; if (strcmp(s, "masked")==0) return MASKED; fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s); return SSE; } char *get_cost_string(COST_TYPE a) { switch(a){ case SSE: return "sse"; case MASKED: return "masked"; } return "sse"; } cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale) { fprintf(stderr, "Cost Layer: %d inputs\n", inputs); cost_layer l = {0}; l.type = COST; l.scale = scale; l.batch = batch; l.inputs = inputs; l.outputs = inputs; l.cost_type = cost_type; l.delta = calloc(inputs*batch, sizeof(float)); l.output = calloc(1, sizeof(float)); #ifdef GPU l.delta_gpu = cuda_make_array(l.delta, inputs*batch); #endif return l; } void resize_cost_layer(cost_layer *l, int inputs) { l->inputs = inputs; l->outputs = inputs; l->delta = realloc(l->delta, inputs*l->batch*sizeof(float)); #ifdef GPU cuda_free(l->delta_gpu); l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch); #endif } void forward_cost_layer(cost_layer l, network_state state) { if (!state.truth) return; if(l.cost_type == MASKED){ int i; for(i = 0; i < l.batch*l.inputs; ++i){ if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM; } } copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1); axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1); *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1); //printf("cost: %f\n", *l.output); } void backward_cost_layer(const cost_layer l, network_state state) { axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1); } #ifdef GPU void pull_cost_layer(cost_layer l) { cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); } void push_cost_layer(cost_layer l) { cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); } void forward_cost_layer_gpu(cost_layer l, network_state state) { if (!state.truth) return; if (l.cost_type == MASKED) { mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth); } copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1); axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1); cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); *(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1); } void backward_cost_layer_gpu(const cost_layer l, network_state state) { axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1); } #endif