#ifndef DARKNET_API #define DARKNET_API #include #include #include #include #define SECRET_NUM -1234 extern int gpu_index; #ifdef GPU #define BLOCK 512 #include "cuda_runtime.h" #include "curand.h" #include "cublas_v2.h" #ifdef CUDNN #include "cudnn.h" #endif #endif #ifndef __cplusplus #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/core/version.hpp" #if CV_MAJOR_VERSION == 3 #include "opencv2/videoio/videoio_c.h" #include "opencv2/imgcodecs/imgcodecs_c.h" #endif #endif #endif typedef struct{ int classes; char **names; } metadata; metadata get_metadata(char *file); typedef struct{ int *leaf; int n; int *parent; int *child; int *group; char **name; int groups; int *group_size; int *group_offset; } tree; typedef enum{ LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN } ACTIVATION; typedef enum { CONVOLUTIONAL, DECONVOLUTIONAL, CONNECTED, MAXPOOL, SOFTMAX, DETECTION, DROPOUT, CROP, ROUTE, COST, NORMALIZATION, AVGPOOL, LOCAL, SHORTCUT, ACTIVE, RNN, GRU, LSTM, CRNN, BATCHNORM, NETWORK, XNOR, REGION, REORG, BLANK } LAYER_TYPE; typedef enum{ SSE, MASKED, L1, SEG, SMOOTH } COST_TYPE; typedef struct{ int batch; float learning_rate; float momentum; float decay; int adam; float B1; float B2; float eps; int t; } update_args; struct network; typedef struct network network; struct layer; typedef struct layer layer; struct layer{ LAYER_TYPE type; ACTIVATION activation; COST_TYPE cost_type; void (*forward) (struct layer, struct network); void (*backward) (struct layer, struct network); void (*update) (struct layer, update_args); void (*forward_gpu) (struct layer, struct network); void (*backward_gpu) (struct layer, struct network); void (*update_gpu) (struct layer, update_args); int batch_normalize; int shortcut; int batch; int forced; int flipped; int inputs; int outputs; int nweights; int nbiases; int extra; int truths; int h,w,c; int out_h, out_w, out_c; int n; int max_boxes; int groups; int size; int side; int stride; int reverse; int flatten; int spatial; int pad; int sqrt; int flip; int index; int binary; int xnor; int steps; int hidden; int truth; float smooth; float dot; float angle; float jitter; float saturation; float exposure; float shift; float ratio; float learning_rate_scale; int softmax; int classes; int coords; int background; int rescore; int objectness; int does_cost; int joint; int noadjust; int reorg; int log; int tanh; float alpha; float beta; float kappa; float coord_scale; float object_scale; float noobject_scale; float mask_scale; float class_scale; int bias_match; int random; float thresh; int classfix; int absolute; int onlyforward; int stopbackward; int dontload; int dontloadscales; float temperature; float probability; float scale; char * cweights; int * indexes; int * input_layers; int * input_sizes; int * map; float * rand; float * cost; float * state; float * prev_state; float * forgot_state; float * forgot_delta; float * state_delta; float * combine_cpu; float * combine_delta_cpu; float * concat; float * concat_delta; float * binary_weights; float * biases; float * bias_updates; float * scales; float * scale_updates; float * weights; float * weight_updates; float * delta; float * output; float * squared; float * norms; float * spatial_mean; float * mean; float * variance; float * mean_delta; float * variance_delta; float * rolling_mean; float * rolling_variance; float * x; float * x_norm; float * m; float * v; float * bias_m; float * bias_v; float * scale_m; float * scale_v; float *z_cpu; float *r_cpu; float *h_cpu; float * prev_state_cpu; float *temp_cpu; float *temp2_cpu; float *temp3_cpu; float *dh_cpu; float *hh_cpu; float *prev_cell_cpu; float *cell_cpu; float *f_cpu; float *i_cpu; float *g_cpu; float *o_cpu; float *c_cpu; float *dc_cpu; float * binary_input; struct layer *input_layer; struct layer *self_layer; struct layer *output_layer; struct layer *reset_layer; struct layer *update_layer; struct layer *state_layer; struct layer *input_gate_layer; struct layer *state_gate_layer; struct layer *input_save_layer; struct layer *state_save_layer; struct layer *input_state_layer; struct layer *state_state_layer; struct layer *input_z_layer; struct layer *state_z_layer; struct layer *input_r_layer; struct layer *state_r_layer; struct layer *input_h_layer; struct layer *state_h_layer; struct layer *wz; struct layer *uz; struct layer *wr; struct layer *ur; struct layer *wh; struct layer *uh; struct layer *uo; struct layer *wo; struct layer *uf; struct layer *wf; struct layer *ui; struct layer *wi; struct layer *ug; struct layer *wg; tree *softmax_tree; size_t workspace_size; #ifdef GPU int *indexes_gpu; float *z_gpu; float *r_gpu; float *h_gpu; float *temp_gpu; float *temp2_gpu; float *temp3_gpu; float *dh_gpu; float *hh_gpu; float *prev_cell_gpu; float *cell_gpu; float *f_gpu; float *i_gpu; float *g_gpu; float *o_gpu; float *c_gpu; float *dc_gpu; float *m_gpu; float *v_gpu; float *bias_m_gpu; float *scale_m_gpu; float *bias_v_gpu; float *scale_v_gpu; float * combine_gpu; float * combine_delta_gpu; float * prev_state_gpu; float * forgot_state_gpu; float * forgot_delta_gpu; float * state_gpu; float * state_delta_gpu; float * gate_gpu; float * gate_delta_gpu; float * save_gpu; float * save_delta_gpu; float * concat_gpu; float * concat_delta_gpu; float * binary_input_gpu; float * binary_weights_gpu; float * mean_gpu; float * variance_gpu; float * rolling_mean_gpu; float * rolling_variance_gpu; float * variance_delta_gpu; float * mean_delta_gpu; float * x_gpu; float * x_norm_gpu; float * weights_gpu; float * weight_updates_gpu; float * weight_change_gpu; float * biases_gpu; float * bias_updates_gpu; float * bias_change_gpu; float * scales_gpu; float * scale_updates_gpu; float * scale_change_gpu; float * output_gpu; float * delta_gpu; float * rand_gpu; float * squared_gpu; float * norms_gpu; #ifdef CUDNN cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc; cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc; cudnnTensorDescriptor_t normTensorDesc; cudnnFilterDescriptor_t weightDesc; cudnnFilterDescriptor_t dweightDesc; cudnnConvolutionDescriptor_t convDesc; cudnnConvolutionFwdAlgo_t fw_algo; cudnnConvolutionBwdDataAlgo_t bd_algo; cudnnConvolutionBwdFilterAlgo_t bf_algo; #endif #endif }; void free_layer(layer); typedef enum { CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM } learning_rate_policy; typedef struct network{ int n; int batch; size_t *seen; int *t; float epoch; int subdivisions; layer *layers; float *output; learning_rate_policy policy; float learning_rate; float momentum; float decay; float gamma; float scale; float power; int time_steps; int step; int max_batches; float *scales; int *steps; int num_steps; int burn_in; int adam; float B1; float B2; float eps; int inputs; int outputs; int truths; int notruth; int h, w, c; int max_crop; int min_crop; int center; float angle; float aspect; float exposure; float saturation; float hue; int gpu_index; tree *hierarchy; float *input; float *truth; float *delta; float *workspace; int train; int index; float *cost; #ifdef GPU float *input_gpu; float *truth_gpu; float *delta_gpu; float *output_gpu; #endif } network; typedef struct { int w; int h; float scale; float rad; float dx; float dy; float aspect; } augment_args; typedef struct { int w; int h; int c; float *data; } image; typedef struct{ float x, y, w, h; } box; typedef struct matrix{ int rows, cols; float **vals; } matrix; typedef struct{ int w, h; matrix X; matrix y; int shallow; int *num_boxes; box **boxes; } data; typedef enum { CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA } data_type; typedef struct load_args{ int threads; char **paths; char *path; int n; int m; char **labels; int h; int w; int out_w; int out_h; int nh; int nw; int num_boxes; int min, max, size; int classes; int background; int scale; int center; int coords; float jitter; float angle; float aspect; float saturation; float exposure; float hue; data *d; image *im; image *resized; data_type type; tree *hierarchy; } load_args; typedef struct{ int id; float x,y,w,h; float left, right, top, bottom; } box_label; network load_network(char *cfg, char *weights, int clear); network *load_network_p(char *cfg, char *weights, int clear); load_args get_base_args(network net); void free_data(data d); typedef struct node{ void *val; struct node *next; struct node *prev; } node; typedef struct list{ int size; node *front; node *back; } list; pthread_t load_data(load_args args); list *read_data_cfg(char *filename); list *read_cfg(char *filename); void forward_network(network net); void backward_network(network net); void update_network(network net); void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY); void copy_cpu(int N, float *X, int INCX, float *Y, int INCY); void scal_cpu(int N, float ALPHA, float *X, int INCX); void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial); int best_3d_shift_r(image a, image b, int min, int max); #ifdef GPU void axpy_gpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY); void fill_gpu(int N, float ALPHA, float * X, int INCX); void scal_gpu(int N, float ALPHA, float * X, int INCX); void copy_gpu(int N, float * X, int INCX, float * Y, int INCY); void cuda_set_device(int n); void cuda_free(float *x_gpu); float *cuda_make_array(float *x, size_t n); void cuda_pull_array(float *x_gpu, float *x, size_t n); float cuda_mag_array(float *x_gpu, size_t n); void cuda_push_array(float *x_gpu, float *x, size_t n); void forward_network_gpu(network net); void backward_network_gpu(network net); void update_network_gpu(network net); float train_networks(network *nets, int n, data d, int interval); void sync_nets(network *nets, int n, int interval); void harmless_update_network_gpu(network net); #endif void save_image_png(image im, const char *name); void get_next_batch(data d, int n, int offset, float *X, float *y); void grayscale_image_3c(image im); void normalize_image(image p); void matrix_to_csv(matrix m); float train_network_sgd(network net, data d, int n); void rgbgr_image(image im); data copy_data(data d); data concat_data(data d1, data d2); data load_cifar10_data(char *filename); float matrix_topk_accuracy(matrix truth, matrix guess, int k); void matrix_add_matrix(matrix from, matrix to); void scale_matrix(matrix m, float scale); matrix csv_to_matrix(char *filename); float *network_accuracies(network net, data d, int n); float train_network_datum(network net); image make_random_image(int w, int h, int c); void denormalize_connected_layer(layer l); void denormalize_convolutional_layer(layer l); void statistics_connected_layer(layer l); void rescale_weights(layer l, float scale, float trans); void rgbgr_weights(layer l); image *get_weights(layer l); void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int frame_skip, char *prefix, int avg, float hier_thresh, int w, int h, int fps, int fullscreen); void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness); char *option_find_str(list *l, char *key, char *def); int option_find_int(list *l, char *key, int def); network parse_network_cfg(char *filename); void save_weights(network net, char *filename); void load_weights(network *net, char *filename); void save_weights_upto(network net, char *filename, int cutoff); void load_weights_upto(network *net, char *filename, int start, int cutoff); void zero_objectness(layer l); void get_region_boxes(layer l, int w, int h, int netw, int neth, float thresh, float **probs, box *boxes, float **masks, int only_objectness, int *map, float tree_thresh, int relative); void free_network(network net); void set_batch_network(network *net, int b); void set_temp_network(network net, float t); image load_image(char *filename, int w, int h, int c); image load_image_color(char *filename, int w, int h); image make_image(int w, int h, int c); image resize_image(image im, int w, int h); image letterbox_image(image im, int w, int h); image crop_image(image im, int dx, int dy, int w, int h); image resize_min(image im, int min); image threshold_image(image im, float thresh); image mask_to_rgb(image mask); int resize_network(network *net, int w, int h); void free_matrix(matrix m); void test_resize(char *filename); void save_image(image p, const char *name); void show_image(image p, const char *name); image copy_image(image p); void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b); float get_current_rate(network net); void composite_3d(char *f1, char *f2, char *out, int delta); data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h); size_t get_current_batch(network net); void constrain_image(image im); image get_network_image_layer(network net, int i); layer get_network_output_layer(network net); void top_predictions(network net, int n, int *index); void flip_image(image a); image float_to_image(int w, int h, int c, float *data); void ghost_image(image source, image dest, int dx, int dy); float network_accuracy(network net, data d); void random_distort_image(image im, float hue, float saturation, float exposure); void fill_image(image m, float s); image grayscale_image(image im); void rotate_image_cw(image im, int times); double what_time_is_it_now(); image rotate_image(image m, float rad); void visualize_network(network net); float box_iou(box a, box b); void do_nms(box *boxes, float **probs, int total, int classes, float thresh); data load_all_cifar10(); box_label *read_boxes(char *filename, int *n); box float_to_box(float *f, int stride); void draw_detections(image im, int num, float thresh, box *boxes, float **probs, float **masks, char **names, image **alphabet, int classes); matrix network_predict_data(network net, data test); image **load_alphabet(); image get_network_image(network net); float *network_predict(network net, float *input); float *network_predict_p(network *net, float *input); int network_width(network *net); int network_height(network *net); float *network_predict_image(network *net, image im); void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, box *boxes, float **probs); int num_boxes(network *net); box *make_boxes(network *net); void reset_network_state(network net, int b); void reset_network_state(network net, int b); char **get_labels(char *filename); void do_nms_sort(box *boxes, float **probs, int total, int classes, float thresh); void do_nms_obj(box *boxes, float **probs, int total, int classes, float thresh); matrix make_matrix(int rows, int cols); #ifndef __cplusplus #ifdef OPENCV image get_image_from_stream(CvCapture *cap); #endif #endif void free_image(image m); float train_network(network net, data d); pthread_t load_data_in_thread(load_args args); void load_data_blocking(load_args args); list *get_paths(char *filename); void hierarchy_predictions(float *predictions, int n, tree *hier, int only_leaves, int stride); void change_leaves(tree *t, char *leaf_list); int find_int_arg(int argc, char **argv, char *arg, int def); float find_float_arg(int argc, char **argv, char *arg, float def); int find_arg(int argc, char* argv[], char *arg); char *find_char_arg(int argc, char **argv, char *arg, char *def); char *basecfg(char *cfgfile); void find_replace(char *str, char *orig, char *rep, char *output); void free_ptrs(void **ptrs, int n); char *fgetl(FILE *fp); void strip(char *s); float sec(clock_t clocks); void **list_to_array(list *l); void top_k(float *a, int n, int k, int *index); int *read_map(char *filename); void error(const char *s); int max_index(float *a, int n); int sample_array(float *a, int n); void free_list(list *l); float mse_array(float *a, int n); float variance_array(float *a, int n); float mag_array(float *a, int n); float mean_array(float *a, int n); void normalize_array(float *a, int n); int *read_intlist(char *s, int *n, int d); size_t rand_size_t(); float rand_normal(); #endif