#include "darknet/network.h" #include "darknet/utils.h" #include "darknet/parser.h" char *dice_labels[] = {"face1","face2","face3","face4","face5","face6"}; void train_dice(char *cfgfile, char *weightfile) { srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); char *backup_directory = "/home/pjreddie/backup/"; printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; int i = *net.seen/imgs; char **labels = dice_labels; list *plist = get_paths("data/dice/dice.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); clock_t time; while(1){ ++i; time=clock(); data train = load_data_old(paths, imgs, plist->size, labels, 6, net.w, net.h); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen); free_data(train); if((i % 100) == 0) net.learning_rate *= .1; if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); save_weights(net, buff); } } } void validate_dice(char *filename, char *weightfile) { network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); char **labels = dice_labels; list *plist = get_paths("data/dice/dice.val.list"); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); data val = load_data_old(paths, m, 0, labels, 6, net.w, net.h); float *acc = network_accuracies(net, val, 2); printf("Validation Accuracy: %f, %d images\n", acc[0], m); free_data(val); } void test_dice(char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); int i = 0; char **names = dice_labels; char buff[256]; char *input = buff; int indexes[6]; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, net.w, net.h); float *X = im.data; float *predictions = network_predict(net, X); top_predictions(net, 6, indexes); for(i = 0; i < 6; ++i){ int index = indexes[i]; printf("%s: %f\n", names[index], predictions[index]); } free_image(im); if (filename) break; } } void run_dice(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; if(0==strcmp(argv[2], "test")) test_dice(cfg, weights, filename); else if(0==strcmp(argv[2], "train")) train_dice(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_dice(cfg, weights); }