#include "darknet/reorg_layer.h" #include "darknet/cuda.h" #include "darknet/blas.h" #include layer make_reorg_layer(int batch, int w, int h, int c, int stride, int reverse, int flatten, int extra) { layer l = {0}; l.type = REORG; l.batch = batch; l.stride = stride; l.extra = extra; l.h = h; l.w = w; l.c = c; l.flatten = flatten; if(reverse){ l.out_w = w*stride; l.out_h = h*stride; l.out_c = c/(stride*stride); }else{ l.out_w = w/stride; l.out_h = h/stride; l.out_c = c*(stride*stride); } l.reverse = reverse; l.outputs = l.out_h * l.out_w * l.out_c; l.inputs = h*w*c; if(l.extra){ l.out_w = l.out_h = l.out_c = 0; l.outputs = l.inputs + l.extra; } if(extra){ fprintf(stderr, "reorg %4d -> %4d\n", l.inputs, l.outputs); } else { fprintf(stderr, "reorg /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c); } int output_size = l.outputs * batch; l.output = calloc(output_size, sizeof(float)); l.delta = calloc(output_size, sizeof(float)); l.forward = forward_reorg_layer; l.backward = backward_reorg_layer; #ifdef GPU l.forward_gpu = forward_reorg_layer_gpu; l.backward_gpu = backward_reorg_layer_gpu; l.output_gpu = cuda_make_array(l.output, output_size); l.delta_gpu = cuda_make_array(l.delta, output_size); #endif return l; } void resize_reorg_layer(layer *l, int w, int h) { int stride = l->stride; int c = l->c; l->h = h; l->w = w; if(l->reverse){ l->out_w = w*stride; l->out_h = h*stride; l->out_c = c/(stride*stride); }else{ l->out_w = w/stride; l->out_h = h/stride; l->out_c = c*(stride*stride); } l->outputs = l->out_h * l->out_w * l->out_c; l->inputs = l->outputs; int output_size = l->outputs * l->batch; l->output = realloc(l->output, output_size * sizeof(float)); l->delta = realloc(l->delta, output_size * sizeof(float)); #ifdef GPU cuda_free(l->output_gpu); cuda_free(l->delta_gpu); l->output_gpu = cuda_make_array(l->output, output_size); l->delta_gpu = cuda_make_array(l->delta, output_size); #endif } void forward_reorg_layer(const layer l, network net) { int i; if(l.flatten){ memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float)); if(l.reverse){ flatten(l.output, l.w*l.h, l.c, l.batch, 0); }else{ flatten(l.output, l.w*l.h, l.c, l.batch, 1); } } else if (l.extra) { for(i = 0; i < l.batch; ++i){ copy_cpu(l.inputs, net.input + i*l.inputs, 1, l.output + i*l.outputs, 1); } } else if (l.reverse){ reorg_cpu(net.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output); } else { reorg_cpu(net.input, l.w, l.h, l.c, l.batch, l.stride, 0, l.output); } } void backward_reorg_layer(const layer l, network net) { int i; if(l.flatten){ memcpy(net.delta, l.delta, l.outputs*l.batch*sizeof(float)); if(l.reverse){ flatten(net.delta, l.w*l.h, l.c, l.batch, 1); }else{ flatten(net.delta, l.w*l.h, l.c, l.batch, 0); } } else if(l.reverse){ reorg_cpu(l.delta, l.w, l.h, l.c, l.batch, l.stride, 0, net.delta); } else if (l.extra) { for(i = 0; i < l.batch; ++i){ copy_cpu(l.inputs, l.delta + i*l.outputs, 1, net.delta + i*l.inputs, 1); } }else{ reorg_cpu(l.delta, l.w, l.h, l.c, l.batch, l.stride, 1, net.delta); } } #ifdef GPU void forward_reorg_layer_gpu(layer l, network net) { int i; if(l.flatten){ if(l.reverse){ flatten_ongpu(net.input_gpu, l.w*l.h, l.c, l.batch, 0, l.output_gpu); }else{ flatten_ongpu(net.input_gpu, l.w*l.h, l.c, l.batch, 1, l.output_gpu); } } else if (l.extra) { for(i = 0; i < l.batch; ++i){ copy_ongpu(l.inputs, net.input_gpu + i*l.inputs, 1, l.output_gpu + i*l.outputs, 1); } } else if (l.reverse) { reorg_ongpu(net.input_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu); }else { reorg_ongpu(net.input_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, l.output_gpu); } } void backward_reorg_layer_gpu(layer l, network net) { if(l.flatten){ if(l.reverse){ flatten_ongpu(l.delta_gpu, l.w*l.h, l.c, l.batch, 1, net.delta_gpu); }else{ flatten_ongpu(l.delta_gpu, l.w*l.h, l.c, l.batch, 0, net.delta_gpu); } } else if (l.extra) { int i; for(i = 0; i < l.batch; ++i){ copy_ongpu(l.inputs, l.delta_gpu + i*l.outputs, 1, net.delta_gpu + i*l.inputs, 1); } } else if(l.reverse){ reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, net.delta_gpu); } else { reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, net.delta_gpu); } } #endif