#include #include #include "network.h" #include "image.h" #include "data.h" #include "utils.h" #include "blas.h" #include "crop_layer.h" #include "connected_layer.h" #include "rnn_layer.h" #include "local_layer.h" #include "convolutional_layer.h" #include "activation_layer.h" #include "deconvolutional_layer.h" #include "detection_layer.h" #include "normalization_layer.h" #include "maxpool_layer.h" #include "avgpool_layer.h" #include "cost_layer.h" #include "softmax_layer.h" #include "dropout_layer.h" #include "route_layer.h" #include "shortcut_layer.h" int get_current_batch(network net) { int batch_num = (*net.seen)/(net.batch*net.subdivisions); return batch_num; } void reset_momentum(network net) { if (net.momentum == 0) return; net.learning_rate = 0; net.momentum = 0; net.decay = 0; #ifdef GPU if(gpu_index >= 0) update_network_gpu(net); #endif } float get_current_rate(network net) { int batch_num = get_current_batch(net); int i; float rate; switch (net.policy) { case CONSTANT: return net.learning_rate; case STEP: return net.learning_rate * pow(net.scale, batch_num/net.step); case STEPS: rate = net.learning_rate; for(i = 0; i < net.num_steps; ++i){ if(net.steps[i] > batch_num) return rate; rate *= net.scales[i]; if(net.steps[i] > batch_num - 1) reset_momentum(net); } return rate; case EXP: return net.learning_rate * pow(net.gamma, batch_num); case POLY: return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); case SIG: return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); default: fprintf(stderr, "Policy is weird!\n"); return net.learning_rate; } } char *get_layer_string(LAYER_TYPE a) { switch(a){ case CONVOLUTIONAL: return "convolutional"; case ACTIVE: return "activation"; case LOCAL: return "local"; case DECONVOLUTIONAL: return "deconvolutional"; case CONNECTED: return "connected"; case RNN: return "rnn"; case MAXPOOL: return "maxpool"; case AVGPOOL: return "avgpool"; case SOFTMAX: return "softmax"; case DETECTION: return "detection"; case DROPOUT: return "dropout"; case CROP: return "crop"; case COST: return "cost"; case ROUTE: return "route"; case SHORTCUT: return "shortcut"; case NORMALIZATION: return "normalization"; default: break; } return "none"; } network make_network(int n) { network net = {0}; net.n = n; net.layers = calloc(net.n, sizeof(layer)); net.seen = calloc(1, sizeof(int)); #ifdef GPU net.input_gpu = calloc(1, sizeof(float *)); net.truth_gpu = calloc(1, sizeof(float *)); #endif return net; } void forward_network(network net, network_state state) { int i; for(i = 0; i < net.n; ++i){ state.index = i; layer l = net.layers[i]; if(l.delta){ scal_cpu(l.outputs * l.batch, 0, l.delta, 1); } if(l.type == CONVOLUTIONAL){ forward_convolutional_layer(l, state); } else if(l.type == DECONVOLUTIONAL){ forward_deconvolutional_layer(l, state); } else if(l.type == ACTIVE){ forward_activation_layer(l, state); } else if(l.type == LOCAL){ forward_local_layer(l, state); } else if(l.type == NORMALIZATION){ forward_normalization_layer(l, state); } else if(l.type == DETECTION){ forward_detection_layer(l, state); } else if(l.type == CONNECTED){ forward_connected_layer(l, state); } else if(l.type == RNN){ forward_rnn_layer(l, state); } else if(l.type == CROP){ forward_crop_layer(l, state); } else if(l.type == COST){ forward_cost_layer(l, state); } else if(l.type == SOFTMAX){ forward_softmax_layer(l, state); } else if(l.type == MAXPOOL){ forward_maxpool_layer(l, state); } else if(l.type == AVGPOOL){ forward_avgpool_layer(l, state); } else if(l.type == DROPOUT){ forward_dropout_layer(l, state); } else if(l.type == ROUTE){ forward_route_layer(l, net); } else if(l.type == SHORTCUT){ forward_shortcut_layer(l, state); } state.input = l.output; } } void update_network(network net) { int i; int update_batch = net.batch*net.subdivisions; float rate = get_current_rate(net); for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == DECONVOLUTIONAL){ update_deconvolutional_layer(l, rate, net.momentum, net.decay); } else if(l.type == CONNECTED){ update_connected_layer(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == RNN){ update_rnn_layer(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == LOCAL){ update_local_layer(l, update_batch, rate, net.momentum, net.decay); } } } float *get_network_output(network net) { int i; for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; return net.layers[i].output; } float get_network_cost(network net) { int i; float sum = 0; int count = 0; for(i = 0; i < net.n; ++i){ if(net.layers[i].type == COST){ sum += net.layers[i].output[0]; ++count; } if(net.layers[i].type == DETECTION){ sum += net.layers[i].cost[0]; ++count; } } return sum/count; } int get_predicted_class_network(network net) { float *out = get_network_output(net); int k = get_network_output_size(net); return max_index(out, k); } void backward_network(network net, network_state state) { int i; float *original_input = state.input; float *original_delta = state.delta; for(i = net.n-1; i >= 0; --i){ state.index = i; if(i == 0){ state.input = original_input; state.delta = original_delta; }else{ layer prev = net.layers[i-1]; state.input = prev.output; state.delta = prev.delta; } layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ backward_convolutional_layer(l, state); } else if(l.type == DECONVOLUTIONAL){ backward_deconvolutional_layer(l, state); } else if(l.type == ACTIVE){ backward_activation_layer(l, state); } else if(l.type == NORMALIZATION){ backward_normalization_layer(l, state); } else if(l.type == MAXPOOL){ if(i != 0) backward_maxpool_layer(l, state); } else if(l.type == AVGPOOL){ backward_avgpool_layer(l, state); } else if(l.type == DROPOUT){ backward_dropout_layer(l, state); } else if(l.type == DETECTION){ backward_detection_layer(l, state); } else if(l.type == SOFTMAX){ if(i != 0) backward_softmax_layer(l, state); } else if(l.type == CONNECTED){ backward_connected_layer(l, state); } else if(l.type == RNN){ backward_rnn_layer(l, state); } else if(l.type == LOCAL){ backward_local_layer(l, state); } else if(l.type == COST){ backward_cost_layer(l, state); } else if(l.type == ROUTE){ backward_route_layer(l, net); } else if(l.type == SHORTCUT){ backward_shortcut_layer(l, state); } } } float train_network_datum(network net, float *x, float *y) { *net.seen += net.batch; #ifdef GPU if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); #endif network_state state; state.index = 0; state.net = net; state.input = x; state.delta = 0; state.truth = y; state.train = 1; forward_network(net, state); backward_network(net, state); float error = get_network_cost(net); if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); return error; } float train_network_sgd(network net, data d, int n) { int batch = net.batch; float *X = calloc(batch*d.X.cols, sizeof(float)); float *y = calloc(batch*d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ get_random_batch(d, batch, X, y); float err = train_network_datum(net, X, y); sum += err; } free(X); free(y); return (float)sum/(n*batch); } float train_network(network net, data d) { int batch = net.batch; int n = d.X.rows / batch; float *X = calloc(batch*d.X.cols, sizeof(float)); float *y = calloc(batch*d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ get_next_batch(d, batch, i*batch, X, y); float err = train_network_datum(net, X, y); sum += err; } free(X); free(y); return (float)sum/(n*batch); } float train_network_batch(network net, data d, int n) { int i,j; network_state state; state.index = 0; state.net = net; state.train = 1; state.delta = 0; float sum = 0; int batch = 2; for(i = 0; i < n; ++i){ for(j = 0; j < batch; ++j){ int index = rand()%d.X.rows; state.input = d.X.vals[index]; state.truth = d.y.vals[index]; forward_network(net, state); backward_network(net, state); sum += get_network_cost(net); } update_network(net); } return (float)sum/(n*batch); } void set_batch_network(network *net, int b) { net->batch = b; int i; for(i = 0; i < net->n; ++i){ net->layers[i].batch = b; } } int resize_network(network *net, int w, int h) { int i; //if(w == net->w && h == net->h) return 0; net->w = w; net->h = h; int inputs = 0; //fprintf(stderr, "Resizing to %d x %d...", w, h); //fflush(stderr); for (i = 0; i < net->n; ++i){ layer l = net->layers[i]; if(l.type == CONVOLUTIONAL){ resize_convolutional_layer(&l, w, h); }else if(l.type == CROP){ resize_crop_layer(&l, w, h); }else if(l.type == MAXPOOL){ resize_maxpool_layer(&l, w, h); }else if(l.type == AVGPOOL){ resize_avgpool_layer(&l, w, h); }else if(l.type == NORMALIZATION){ resize_normalization_layer(&l, w, h); }else if(l.type == COST){ resize_cost_layer(&l, inputs); }else{ error("Cannot resize this type of layer"); } inputs = l.outputs; net->layers[i] = l; w = l.out_w; h = l.out_h; if(l.type == AVGPOOL) break; } //fprintf(stderr, " Done!\n"); return 0; } int get_network_output_size(network net) { int i; for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; return net.layers[i].outputs; } int get_network_input_size(network net) { return net.layers[0].inputs; } detection_layer get_network_detection_layer(network net) { int i; for(i = 0; i < net.n; ++i){ if(net.layers[i].type == DETECTION){ return net.layers[i]; } } fprintf(stderr, "Detection layer not found!!\n"); detection_layer l = {0}; return l; } image get_network_image_layer(network net, int i) { layer l = net.layers[i]; if (l.out_w && l.out_h && l.out_c){ return float_to_image(l.out_w, l.out_h, l.out_c, l.output); } image def = {0}; return def; } image get_network_image(network net) { int i; for(i = net.n-1; i >= 0; --i){ image m = get_network_image_layer(net, i); if(m.h != 0) return m; } image def = {0}; return def; } void visualize_network(network net) { image *prev = 0; int i; char buff[256]; for(i = 0; i < net.n; ++i){ sprintf(buff, "Layer %d", i); layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ prev = visualize_convolutional_layer(l, buff, prev); } } } void top_predictions(network net, int k, int *index) { int size = get_network_output_size(net); float *out = get_network_output(net); top_k(out, size, k, index); } float *network_predict(network net, float *input) { #ifdef GPU if(gpu_index >= 0) return network_predict_gpu(net, input); #endif network_state state; state.net = net; state.index = 0; state.input = input; state.truth = 0; state.train = 0; state.delta = 0; forward_network(net, state); float *out = get_network_output(net); return out; } matrix network_predict_data_multi(network net, data test, int n) { int i,j,b,m; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.rows, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } for(m = 0; m < n; ++m){ float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] += out[j+b*k]/n; } } } } free(X); return pred; } matrix network_predict_data(network net, data test) { int i,j,b; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.cols, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] = out[j+b*k]; } } } free(X); return pred; } void print_network(network net) { int i,j; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; float *output = l.output; int n = l.outputs; float mean = mean_array(output, n); float vari = variance_array(output, n); fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); if(n > 100) n = 100; for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); if(n == 100)fprintf(stderr,".....\n"); fprintf(stderr, "\n"); } } void compare_networks(network n1, network n2, data test) { matrix g1 = network_predict_data(n1, test); matrix g2 = network_predict_data(n2, test); int i; int a,b,c,d; a = b = c = d = 0; for(i = 0; i < g1.rows; ++i){ int truth = max_index(test.y.vals[i], test.y.cols); int p1 = max_index(g1.vals[i], g1.cols); int p2 = max_index(g2.vals[i], g2.cols); if(p1 == truth){ if(p2 == truth) ++d; else ++c; }else{ if(p2 == truth) ++b; else ++a; } } printf("%5d %5d\n%5d %5d\n", a, b, c, d); float num = pow((abs(b - c) - 1.), 2.); float den = b + c; printf("%f\n", num/den); } float network_accuracy(network net, data d) { matrix guess = network_predict_data(net, d); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; } float *network_accuracies(network net, data d, int n) { static float acc[2]; matrix guess = network_predict_data(net, d); acc[0] = matrix_topk_accuracy(d.y, guess, 1); acc[1] = matrix_topk_accuracy(d.y, guess, n); free_matrix(guess); return acc; } float network_accuracy_multi(network net, data d, int n) { matrix guess = network_predict_data_multi(net, d, n); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; } void free_network(network net) { int i; for(i = 0; i < net.n; ++i){ free_layer(net.layers[i]); } free(net.layers); #ifdef GPU if(*net.input_gpu) cuda_free(*net.input_gpu); if(*net.truth_gpu) cuda_free(*net.truth_gpu); if(net.input_gpu) free(net.input_gpu); if(net.truth_gpu) free(net.truth_gpu); #endif }