#include "softmax_layer.h" #include "blas.h" #include "cuda.h" #include #include #include #include #include softmax_layer make_softmax_layer(int batch, int inputs, int groups) { assert(inputs%groups == 0); fprintf(stderr, "softmax %4d\n", inputs); softmax_layer l = {0}; l.type = SOFTMAX; l.batch = batch; l.groups = groups; l.inputs = inputs; l.outputs = inputs; l.loss = calloc(inputs*batch, sizeof(float)); l.output = calloc(inputs*batch, sizeof(float)); l.delta = calloc(inputs*batch, sizeof(float)); l.cost = calloc(1, sizeof(float)); l.forward = forward_softmax_layer; l.backward = backward_softmax_layer; #ifdef GPU l.forward_gpu = forward_softmax_layer_gpu; l.backward_gpu = backward_softmax_layer_gpu; l.output_gpu = cuda_make_array(l.output, inputs*batch); l.loss_gpu = cuda_make_array(l.loss, inputs*batch); l.delta_gpu = cuda_make_array(l.delta, inputs*batch); #endif return l; } void forward_softmax_layer(const softmax_layer l, network net) { if(l.softmax_tree){ int i; int count = 0; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; softmax_cpu(net.input + count, group_size, l.batch, l.inputs, 1, 0, 1, l.temperature, l.output + count); count += group_size; } } else { softmax_cpu(net.input, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output); } if(net.truth){ softmax_x_ent_cpu(l.batch*l.inputs, l.output, net.truth, l.delta, l.loss); l.cost[0] = sum_array(l.loss, l.batch*l.inputs); } } void backward_softmax_layer(const softmax_layer l, network net) { axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, net.delta, 1); } #ifdef GPU void pull_softmax_layer_output(const softmax_layer layer) { cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch); } void forward_softmax_layer_gpu(const softmax_layer l, network net) { if(l.softmax_tree){ softmax_tree(net.input_gpu, 1, l.batch, l.inputs, l.temperature, l.output_gpu, *l.softmax_tree); /* int i; int count = 0; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; softmax_gpu(net.input_gpu + count, group_size, l.batch, l.inputs, 1, 0, 1, l.temperature, l.output_gpu + count); count += group_size; } */ } else { if(l.spatial){ softmax_gpu(net.input_gpu, l.c, l.batch*l.c, l.inputs/l.c, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu); }else{ softmax_gpu(net.input_gpu, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output_gpu); } } if(net.truth){ softmax_x_ent_gpu(l.batch*l.inputs, l.output_gpu, net.truth_gpu, l.delta_gpu, l.loss_gpu); if(l.softmax_tree){ mask_gpu(l.batch*l.inputs, l.delta_gpu, SECRET_NUM, net.truth_gpu, 0); mask_gpu(l.batch*l.inputs, l.loss_gpu, SECRET_NUM, net.truth_gpu, 0); } cuda_pull_array(l.loss_gpu, l.loss, l.batch*l.inputs); l.cost[0] = sum_array(l.loss, l.batch*l.inputs); } } void backward_softmax_layer_gpu(const softmax_layer layer, network net) { axpy_gpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, net.delta_gpu, 1); } #endif