#include "region_layer.h" #include "activations.h" #include "blas.h" #include "box.h" #include "cuda.h" #include "utils.h" #include #include #include #include region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords) { region_layer l = {0}; l.type = REGION; l.n = n; l.batch = batch; l.h = h; l.w = w; l.classes = classes; l.coords = coords; l.cost = calloc(1, sizeof(float)); l.biases = calloc(n*2, sizeof(float)); l.bias_updates = calloc(n*2, sizeof(float)); l.outputs = h*w*n*(classes + coords + 1); l.inputs = l.outputs; l.truths = 30*(5); l.delta = calloc(batch*l.outputs, sizeof(float)); l.output = calloc(batch*l.outputs, sizeof(float)); int i; for(i = 0; i < n*2; ++i){ l.biases[i] = .5; } l.forward = forward_region_layer; l.backward = backward_region_layer; #ifdef GPU l.forward_gpu = forward_region_layer_gpu; l.backward_gpu = backward_region_layer_gpu; l.output_gpu = cuda_make_array(l.output, batch*l.outputs); l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); #endif fprintf(stderr, "Region Layer\n"); srand(0); return l; } box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h) { box b; b.x = (i + .5)/w + x[index + 0] * biases[2*n]; b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1]; b.w = exp(x[index + 2]) * biases[2*n]; b.h = exp(x[index + 3]) * biases[2*n+1]; return b; } float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale) { box pred = get_region_box(x, biases, n, index, i, j, w, h); float iou = box_iou(pred, truth); float tx = (truth.x - (i + .5)/w) / biases[2*n]; float ty = (truth.y - (j + .5)/h) / biases[2*n + 1]; float tw = log(truth.w / biases[2*n]); float th = log(truth.h / biases[2*n + 1]); delta[index + 0] = scale * (tx - x[index + 0]); delta[index + 1] = scale * (ty - x[index + 1]); delta[index + 2] = scale * (tw - x[index + 2]); delta[index + 3] = scale * (th - x[index + 3]); return iou; } float logit(float x) { return log(x/(1.-x)); } float tisnan(float x) { return (x != x); } #define LOG 0 void forward_region_layer(const region_layer l, network_state state) { int i,j,b,t,n; int size = l.coords + l.classes + 1; memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); for (b = 0; b < l.batch; ++b){ for(i = 0; i < l.h*l.w*l.n; ++i){ int index = size*i + b*l.outputs; l.output[index + 4] = logistic_activate(l.output[index + 4]); if(l.softmax){ softmax(l.output + index + 5, l.classes, 1, l.output + index + 5); } } } if(!state.train) return; memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); float avg_iou = 0; float recall = 0; float avg_cat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; *(l.cost) = 0; for (b = 0; b < l.batch; ++b) { for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w; ++i) { for (n = 0; n < l.n; ++n) { int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); float best_iou = 0; for(t = 0; t < 30; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); if(!truth.x) break; float iou = box_iou(pred, truth); if (iou > best_iou) best_iou = iou; } avg_anyobj += l.output[index + 4]; l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); if(best_iou > .5) l.delta[index + 4] = 0; if(*(state.net.seen) < 6400){ box truth = {0}; truth.x = (i + .5)/l.w; truth.y = (j + .5)/l.h; truth.w = .5; truth.h = .5; delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01); //l.delta[index + 0] = .1 * (0 - l.output[index + 0]); //l.delta[index + 1] = .1 * (0 - l.output[index + 1]); //l.delta[index + 2] = .1 * (0 - l.output[index + 2]); //l.delta[index + 3] = .1 * (0 - l.output[index + 3]); } } } } for(t = 0; t < 30; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); int class = state.truth[t*5 + b*l.truths + 4]; if(!truth.x) break; float best_iou = 0; int best_index = 0; int best_n = 0; i = (truth.x * l.w); j = (truth.y * l.h); //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h); box truth_shift = truth; truth_shift.x = 0; truth_shift.y = 0; printf("index %d %d\n",i, j); for(n = 0; n < l.n; ++n){ int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); printf("pred: (%f, %f) %f x %f\n", pred.x*l.w - i - .5, pred.y * l.h - j - .5, pred.w, pred.h); pred.x = 0; pred.y = 0; float iou = box_iou(pred, truth_shift); if (iou > best_iou){ best_index = index; best_iou = iou; best_n = n; } } printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x * l.w - i - .5, truth.y*l.h - j - .5, truth.w, truth.h); float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale); if(iou > .5) recall += 1; avg_iou += iou; //l.delta[best_index + 4] = iou - l.output[best_index + 4]; avg_obj += l.output[best_index + 4]; l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]); if (l.rescore) { l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]); } //printf("%f\n", l.delta[best_index+1]); /* if(isnan(l.delta[best_index+1])){ printf("%f\n", true_scale); printf("%f\n", l.output[best_index + 1]); printf("%f\n", truth.w); printf("%f\n", truth.h); error("bad"); } */ for(n = 0; n < l.classes; ++n){ l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]); if(n == class) avg_cat += l.output[best_index + 5 + n]; } /* if(0){ printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h); printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h); float aspect = exp(true_aspect); float scale = logistic_activate(true_scale); float move_x = true_dx; float move_y = true_dy; box b; b.w = sqrt(scale * aspect); b.h = b.w * 1./aspect; b.x = move_x * b.w + (i + .5)/l.w; b.y = move_y * b.h + (j + .5)/l.h; printf("%f %f\n", b.x, truth.x); printf("%f %f\n", b.y, truth.y); printf("%f %f\n", b.w, truth.w); printf("%f %f\n", b.h, truth.h); //printf("%f\n", box_iou(b, truth)); } */ ++count; } } printf("\n"); reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); } void backward_region_layer(const region_layer l, network_state state) { axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); } void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) { int i,j,n; float *predictions = l.output; //int per_cell = 5*num+classes; for (i = 0; i < l.w*l.h; ++i){ int row = i / l.w; int col = i % l.w; for(n = 0; n < l.n; ++n){ int index = i*l.n + n; int p_index = index * (l.classes + 5) + 4; float scale = predictions[p_index]; int box_index = index * (l.classes + 5); boxes[index].x = (predictions[box_index + 0] + col + .5) / l.w * w; boxes[index].y = (predictions[box_index + 1] + row + .5) / l.h * h; if(0){ boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / l.w * w; boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / l.h * h; } boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (l.sqrt?2:1)) * w; boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (l.sqrt?2:1)) * h; if(1){ boxes[index].x = ((col + .5)/l.w + predictions[box_index + 0] * .5) * w; boxes[index].y = ((row + .5)/l.h + predictions[box_index + 1] * .5) * h; boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w; boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h; } for(j = 0; j < l.classes; ++j){ int class_index = index * (l.classes + 5) + 5; float prob = scale*predictions[class_index+j]; probs[index][j] = (prob > thresh) ? prob : 0; } if(only_objectness){ probs[index][0] = scale; } } } } #ifdef GPU void forward_region_layer_gpu(const region_layer l, network_state state) { /* if(!state.train){ copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); return; } */ float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ int num_truth = l.batch*l.truths; truth_cpu = calloc(num_truth, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, num_truth); } cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); network_state cpu_state = state; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_region_layer(l, cpu_state); cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); free(cpu_state.input); if(cpu_state.truth) free(cpu_state.truth); } void backward_region_layer_gpu(region_layer l, network_state state) { axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1); //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); } #endif