#include "network.h" #include "utils.h" #include "parser.h" #include "option_list.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #endif list *read_data_cfg(char *filename) { FILE *file = fopen(filename, "r"); if(file == 0) file_error(filename); char *line; int nu = 0; list *options = make_list(); while((line=fgetl(file)) != 0){ ++ nu; strip(line); switch(line[0]){ case '\0': case '#': case ';': free(line); break; default: if(!read_option(line, options)){ fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); free(line); } break; } } fclose(file); return options; } void train_classifier(char *datacfg, char *cfgfile, char *weightfile) { data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 2); char **labels = get_labels(label_list); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; pthread_t load_thread; data train; data buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = classes; args.n = imgs; args.m = N; args.labels = labels; args.d = &buffer; args.type = CLASSIFICATION_DATA; load_thread = load_data_in_thread(args); int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); free_data(train); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_data(buffer); free_network(net); free_ptrs((void**)labels, classes); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); } void validate_classifier(char *datacfg, char *filename, char *weightfile) { int i = 0; network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "topk", 1); char **labels = get_labels(label_list); list *plist = get_paths(valid_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; float avg_acc = 0; float avg_topk = 0; int splits = 50; int num = (i+1)*m/splits - i*m/splits; data val, buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = classes; args.n = num; args.m = 0; args.labels = labels; args.d = &buffer; args.type = CLASSIFICATION_DATA; pthread_t load_thread = load_data_in_thread(args); for(i = 1; i <= splits; ++i){ time=clock(); pthread_join(load_thread, 0); val = buffer; num = (i+1)*m/splits - i*m/splits; char **part = paths+(i*m/splits); if(i != splits){ args.paths = part; load_thread = load_data_in_thread(args); } printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); time=clock(); float *acc = network_accuracies(net, val, topk); avg_acc += acc[0]; avg_topk += acc[1]; printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows); free_data(val); } } void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename) { network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); int top = option_find_int(options, "top", 1); int i = 0; char **names = get_labels(label_list); clock_t time; int indexes[10]; char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 256, 256); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); top_predictions(net, top, indexes); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); for(i = 0; i < top; ++i){ int index = indexes[i]; printf("%s: %f\n", names[index], predictions[index]); } free_image(im); if (filename) break; } } void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer) { int curr = 0; network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); list *options = read_data_cfg(datacfg); char *test_list = option_find_str(options, "test", "data/test.list"); char *label_list = option_find_str(options, "labels", "data/labels.list"); int classes = option_find_int(options, "classes", 2); char **labels = get_labels(label_list); list *plist = get_paths(test_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; data val, buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = classes; args.n = net.batch; args.m = 0; args.labels = labels; args.d = &buffer; args.type = CLASSIFICATION_DATA; pthread_t load_thread = load_data_in_thread(args); for(curr = net.batch; curr < m; curr += net.batch){ time=clock(); pthread_join(load_thread, 0); val = buffer; if(curr < m){ args.paths = paths + curr; if (curr + net.batch > m) args.n = m - curr; load_thread = load_data_in_thread(args); } fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); time=clock(); matrix pred = network_predict_data(net, val); int i; if (target_layer >= 0){ layer l = net.layers[target_layer]; } for(i = 0; i < val.X.rows; ++i){ } free_matrix(pred); fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows); free_data(val); } } void run_classifier(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; char *layer_s = (argc > 7) ? argv[7]: 0; int layer = layer_s ? atoi(layer_s) : -1; if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights); else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer); else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights); }