#include "darknet.h" #include #include void extend_data_truth(data *d, int n, float val) { int i, j; for(i = 0; i < d->y.rows; ++i){ d->y.vals[i] = realloc(d->y.vals[i], (d->y.cols+n)*sizeof(float)); for(j = 0; j < n; ++j){ d->y.vals[i][d->y.cols + j] = val; } } d->y.cols += n; } matrix network_loss_data(network *net, data test) { int i,b; int k = 1; matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net->batch*test.X.cols, sizeof(float)); float *y = calloc(net->batch*test.y.cols, sizeof(float)); for(i = 0; i < test.X.rows; i += net->batch){ for(b = 0; b < net->batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); memcpy(y+b*test.y.cols, test.y.vals[i+b], test.y.cols*sizeof(float)); } network orig = *net; net->input = X; net->truth = y; net->train = 0; net->delta = 0; forward_network(net); *net = orig; float *delta = net->layers[net->n-1].output; for(b = 0; b < net->batch; ++b){ if(i+b == test.X.rows) break; int t = max_index(y + b*test.y.cols, 1000); float err = sum_array(delta + b*net->outputs, net->outputs); pred.vals[i+b][0] = -err; //pred.vals[i+b][0] = 1-delta[b*net->outputs + t]; } } free(X); free(y); return pred; } void train_attention(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { int i, j; float avg_cls_loss = -1; float avg_att_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); printf("%d\n", ngpus); network **nets = calloc(ngpus, sizeof(network*)); srand(time(0)); int seed = rand(); for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = load_network(cfgfile, weightfile, clear); nets[i]->learning_rate *= ngpus; } srand(time(0)); network *net = nets[0]; int imgs = net->batch * net->subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 2); char **labels = get_labels(label_list); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; double time; int divs=3; int size=2; load_args args = {0}; args.w = divs*net->w/size; args.h = divs*net->h/size; args.size = divs*net->w/size; args.threads = 32; args.hierarchy = net->hierarchy; args.min = net->min_ratio*args.w; args.max = net->max_ratio*args.w; args.angle = net->angle; args.aspect = net->aspect; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; args.paths = paths; args.classes = classes; args.n = imgs; args.m = N; args.labels = labels; args.type = CLASSIFICATION_DATA; data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ time = what_time_is_it_now(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); data resized = resize_data(train, net->w, net->h); extend_data_truth(&resized, divs*divs, 0); data *tiles = tile_data(train, divs, size); printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); time = what_time_is_it_now(); float aloss = 0; float closs = 0; int z; for (i = 0; i < divs*divs/ngpus; ++i) { #pragma omp parallel for for(j = 0; j < ngpus; ++j){ int index = i*ngpus + j; extend_data_truth(tiles+index, divs*divs, SECRET_NUM); matrix deltas = network_loss_data(nets[j], tiles[index]); for(z = 0; z < resized.y.rows; ++z){ resized.y.vals[z][train.y.cols + index] = deltas.vals[z][0]; } free_matrix(deltas); } } int *inds = calloc(resized.y.rows, sizeof(int)); for(z = 0; z < resized.y.rows; ++z){ int index = max_index(resized.y.vals[z] + train.y.cols, divs*divs); inds[z] = index; for(i = 0; i < divs*divs; ++i){ resized.y.vals[z][train.y.cols + i] = (i == index)? 1 : 0; } } data best = select_data(tiles, inds); free(inds); #ifdef GPU if (ngpus == 1) { closs = train_network(net, best); } else { closs = train_networks(nets, ngpus, best, 4); } #endif for (i = 0; i < divs*divs; ++i) { printf("%.2f ", resized.y.vals[0][train.y.cols + i]); if((i+1)%divs == 0) printf("\n"); free_data(tiles[i]); } free_data(best); printf("\n"); image im = float_to_image(64,64,3,resized.X.vals[0]); //show_image(im, "orig"); //cvWaitKey(100); /* image im1 = float_to_image(64,64,3,tiles[i].X.vals[0]); image im2 = float_to_image(64,64,3,resized.X.vals[0]); show_image(im1, "tile"); show_image(im2, "res"); */ #ifdef GPU if (ngpus == 1) { aloss = train_network(net, resized); } else { aloss = train_networks(nets, ngpus, resized, 4); } #endif for(i = 0; i < divs*divs; ++i){ printf("%f ", nets[0]->output[1000 + i]); if ((i+1) % divs == 0) printf("\n"); } printf("\n"); free_data(resized); free_data(train); if(avg_cls_loss == -1) avg_cls_loss = closs; if(avg_att_loss == -1) avg_att_loss = aloss; avg_cls_loss = avg_cls_loss*.9 + closs*.1; avg_att_loss = avg_att_loss*.9 + aloss*.1; printf("%ld, %.3f: Att: %f, %f avg, Class: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, aloss, avg_att_loss, closs, avg_cls_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen); if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%1000 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_network(net); free_ptrs((void**)labels, classes); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); } void validate_attention_single(char *datacfg, char *filename, char *weightfile) { int i, j; network *net = load_network(filename, weightfile, 0); set_batch_network(net, 1); srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *leaf_list = option_find_str(options, "leaves", 0); if(leaf_list) change_leaves(net->hierarchy, leaf_list); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "top", 1); char **labels = get_labels(label_list); list *plist = get_paths(valid_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); float avg_acc = 0; float avg_topk = 0; int *indexes = calloc(topk, sizeof(int)); int divs = 4; int size = 2; int extra = 0; float *avgs = calloc(classes, sizeof(float)); int *inds = calloc(divs*divs, sizeof(int)); for(i = 0; i < m; ++i){ int class = -1; char *path = paths[i]; for(j = 0; j < classes; ++j){ if(strstr(path, labels[j])){ class = j; break; } } image im = load_image_color(paths[i], 0, 0); image resized = resize_min(im, net->w*divs/size); image crop = crop_image(resized, (resized.w - net->w*divs/size)/2, (resized.h - net->h*divs/size)/2, net->w*divs/size, net->h*divs/size); image rcrop = resize_image(crop, net->w, net->h); //show_image(im, "orig"); //show_image(crop, "cropped"); //cvWaitKey(0); float *pred = network_predict(net, rcrop.data); //pred[classes + 56] = 0; for(j = 0; j < divs*divs; ++j){ printf("%.2f ", pred[classes + j]); if((j+1)%divs == 0) printf("\n"); } printf("\n"); copy_cpu(classes, pred, 1, avgs, 1); top_k(pred + classes, divs*divs, divs*divs, inds); show_image(crop, "crop"); for(j = 0; j < extra; ++j){ int index = inds[j]; int row = index / divs; int col = index % divs; int y = row * crop.h / divs - (net->h - crop.h/divs)/2; int x = col * crop.w / divs - (net->w - crop.w/divs)/2; printf("%d %d %d %d\n", row, col, y, x); image tile = crop_image(crop, x, y, net->w, net->h); float *pred = network_predict(net, tile.data); axpy_cpu(classes, 1., pred, 1, avgs, 1); show_image(tile, "tile"); cvWaitKey(10); } if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1); if(rcrop.data != resized.data) free_image(rcrop); if(resized.data != im.data) free_image(resized); free_image(im); free_image(crop); top_k(pred, classes, topk, indexes); if(indexes[0] == class) avg_acc += 1; for(j = 0; j < topk; ++j){ if(indexes[j] == class) avg_topk += 1; } printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); } } void validate_attention_multi(char *datacfg, char *filename, char *weightfile) { int i, j; network *net = load_network(filename, weightfile, 0); set_batch_network(net, 1); srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "top", 1); char **labels = get_labels(label_list); list *plist = get_paths(valid_list); int scales[] = {224, 288, 320, 352, 384}; int nscales = sizeof(scales)/sizeof(scales[0]); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); float avg_acc = 0; float avg_topk = 0; int *indexes = calloc(topk, sizeof(int)); for(i = 0; i < m; ++i){ int class = -1; char *path = paths[i]; for(j = 0; j < classes; ++j){ if(strstr(path, labels[j])){ class = j; break; } } float *pred = calloc(classes, sizeof(float)); image im = load_image_color(paths[i], 0, 0); for(j = 0; j < nscales; ++j){ image r = resize_min(im, scales[j]); resize_network(net, r.w, r.h); float *p = network_predict(net, r.data); if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1 , 1); axpy_cpu(classes, 1, p, 1, pred, 1); flip_image(r); p = network_predict(net, r.data); axpy_cpu(classes, 1, p, 1, pred, 1); if(r.data != im.data) free_image(r); } free_image(im); top_k(pred, classes, topk, indexes); free(pred); if(indexes[0] == class) avg_acc += 1; for(j = 0; j < topk; ++j){ if(indexes[j] == class) avg_topk += 1; } printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); } } void predict_attention(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) { network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", 0); if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); if(top == 0) top = option_find_int(options, "top", 1); int i = 0; char **names = get_labels(name_list); clock_t time; int *indexes = calloc(top, sizeof(int)); char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image r = letterbox_image(im, net->w, net->h); //resize_network(&net, r.w, r.h); //printf("%d %d\n", r.w, r.h); float *X = r.data; time=clock(); float *predictions = network_predict(net, X); if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1); top_k(predictions, net->outputs, top, indexes); fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time)); for(i = 0; i < top; ++i){ int index = indexes[i]; //if(net->hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net->hierarchy->parent[index] >= 0) ? names[net->hierarchy->parent[index]] : "Root"); //else printf("%s: %f\n",names[index], predictions[index]); printf("%5.2f%%: %s\n", predictions[index]*100, names[index]); } if(r.data != im.data) free_image(r); free_image(im); if (filename) break; } } void run_attention(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int ngpus; int *gpus = read_intlist(gpu_list, &ngpus, gpu_index); int top = find_int_arg(argc, argv, "-t", 0); int clear = find_arg(argc, argv, "-clear"); char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; char *layer_s = (argc > 7) ? argv[7]: 0; if(0==strcmp(argv[2], "predict")) predict_attention(data, cfg, weights, filename, top); else if(0==strcmp(argv[2], "train")) train_attention(data, cfg, weights, gpus, ngpus, clear); else if(0==strcmp(argv[2], "valid")) validate_attention_single(data, cfg, weights); else if(0==strcmp(argv[2], "validmulti")) validate_attention_multi(data, cfg, weights); }