#include "connected_layer.h" #include "convolutional_layer.h" #include "maxpool_layer.h" #include "network.h" #include "image.h" #include #include #include void test_convolve() { image dog = load_image("dog.jpg"); //show_image_layers(dog, "Dog"); printf("dog channels %d\n", dog.c); image kernel = make_random_image(3,3,dog.c); image edge = make_image(dog.h, dog.w, 1); int i; clock_t start = clock(), end; for(i = 0; i < 1000; ++i){ convolve(dog, kernel, 1, 0, edge); } end = clock(); printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); show_image_layers(edge, "Test Convolve"); } void test_color() { image dog = load_image("test_color.png"); show_image_layers(dog, "Test Color"); } void test_convolutional_layer() { srand(0); image dog = load_image("test_dog.jpg"); int i; int n = 5; int stride = 1; int size = 8; convolutional_layer layer = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); char buff[256]; for(i = 0; i < n; ++i) { sprintf(buff, "Kernel %d", i); show_image(layer.kernels[i], buff); } run_convolutional_layer(dog, layer); maxpool_layer mlayer = make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 3); run_maxpool_layer(layer.output,mlayer); show_image_layers(mlayer.output, "Test Maxpool Layer"); } void test_load() { image dog = load_image("dog.jpg"); show_image(dog, "Test Load"); show_image_layers(dog, "Test Load"); } void test_upsample() { image dog = load_image("dog.jpg"); int n = 3; image up = make_image(n*dog.h, n*dog.w, dog.c); upsample_image(dog, n, up); show_image(up, "Test Upsample"); show_image_layers(up, "Test Upsample"); } void test_rotate() { int i; image dog = load_image("dog.jpg"); clock_t start = clock(), end; for(i = 0; i < 1001; ++i){ rotate_image(dog); } end = clock(); printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); show_image(dog, "Test Rotate"); image random = make_random_image(3,3,3); show_image(random, "Test Rotate Random"); rotate_image(random); show_image(random, "Test Rotate Random"); rotate_image(random); show_image(random, "Test Rotate Random"); } void test_network() { network net; net.n = 11; net.layers = calloc(net.n, sizeof(void *)); net.types = calloc(net.n, sizeof(LAYER_TYPE)); net.types[0] = CONVOLUTIONAL; net.types[1] = MAXPOOL; net.types[2] = CONVOLUTIONAL; net.types[3] = MAXPOOL; net.types[4] = CONVOLUTIONAL; net.types[5] = CONVOLUTIONAL; net.types[6] = CONVOLUTIONAL; net.types[7] = MAXPOOL; net.types[8] = CONNECTED; net.types[9] = CONNECTED; net.types[10] = CONNECTED; image dog = load_image("test_hinton.jpg"); int n = 48; int stride = 4; int size = 11; convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); maxpool_layer ml = make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2); n = 128; size = 5; stride = 1; convolutional_layer cl2 = make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride); maxpool_layer ml2 = make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2); n = 192; size = 3; convolutional_layer cl3 = make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride); convolutional_layer cl4 = make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride); n = 128; convolutional_layer cl5 = make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride); maxpool_layer ml3 = make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4); connected_layer nl = make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096); connected_layer nl2 = make_connected_layer(4096, 4096); connected_layer nl3 = make_connected_layer(4096, 1000); net.layers[0] = &cl; net.layers[1] = &ml; net.layers[2] = &cl2; net.layers[3] = &ml2; net.layers[4] = &cl3; net.layers[5] = &cl4; net.layers[6] = &cl5; net.layers[7] = &ml3; net.layers[8] = &nl; net.layers[9] = &nl2; net.layers[10] = &nl3; int i; clock_t start = clock(), end; for(i = 0; i < 10; ++i){ run_network(dog, net); rotate_image(dog); } end = clock(); printf("Ran %lf second per iteration\n", (double)(end-start)/CLOCKS_PER_SEC/10); show_image_layers(get_network_image(net), "Test Network Layer"); } void test_backpropagate() { int n = 3; int size = 4; int stride = 10; image dog = load_image("dog.jpg"); show_image(dog, "Test Backpropagate Input"); image dog_copy = copy_image(dog); convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); run_convolutional_layer(dog, cl); show_image(cl.output, "Test Backpropagate Output"); int i; clock_t start = clock(), end; for(i = 0; i < 100; ++i){ backpropagate_layer(dog_copy, cl); } end = clock(); printf("Backpropagate: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); start = clock(); for(i = 0; i < 100; ++i){ backpropagate_layer_convolve(dog, cl); } end = clock(); printf("Backpropagate Using Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); show_image(dog_copy, "Test Backpropagate 1"); show_image(dog, "Test Backpropagate 2"); subtract_image(dog, dog_copy); show_image(dog, "Test Backpropagate Difference"); } int main() { //test_backpropagate(); //test_convolve(); //test_upsample(); //test_rotate(); //test_load(); test_network(); //test_convolutional_layer(); //test_color(); cvWaitKey(0); return 0; }