#include "connected_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" #include "gemm.h" #include #include #include #include connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation) { int i; connected_layer l = {0}; l.type = CONNECTED; l.inputs = inputs; l.outputs = outputs; l.batch=batch; l.output = calloc(batch*outputs, sizeof(float*)); l.delta = calloc(batch*outputs, sizeof(float*)); l.weight_updates = calloc(inputs*outputs, sizeof(float)); l.bias_updates = calloc(outputs, sizeof(float)); l.weights = calloc(inputs*outputs, sizeof(float)); l.biases = calloc(outputs, sizeof(float)); float scale = 1./sqrt(inputs); for(i = 0; i < inputs*outputs; ++i){ l.weights[i] = 2*scale*rand_uniform() - scale; } for(i = 0; i < outputs; ++i){ l.biases[i] = scale; } #ifdef GPU l.weights_gpu = cuda_make_array(l.weights, inputs*outputs); l.biases_gpu = cuda_make_array(l.biases, outputs); l.weight_updates_gpu = cuda_make_array(l.weight_updates, inputs*outputs); l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); l.output_gpu = cuda_make_array(l.output, outputs*batch); l.delta_gpu = cuda_make_array(l.delta, outputs*batch); #endif l.activation = activation; fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); return l; } void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay) { axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); scal_cpu(l.outputs, momentum, l.bias_updates, 1); axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1); axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1); scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1); } void forward_connected_layer(connected_layer l, network_state state) { int i; for(i = 0; i < l.batch; ++i){ copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1); } int m = l.batch; int k = l.inputs; int n = l.outputs; float *a = state.input; float *b = l.weights; float *c = l.output; gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); activate_array(l.output, l.outputs*l.batch, l.activation); } void backward_connected_layer(connected_layer l, network_state state) { int i; gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); for(i = 0; i < l.batch; ++i){ axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1); } int m = l.inputs; int k = l.batch; int n = l.outputs; float *a = state.input; float *b = l.delta; float *c = l.weight_updates; gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); m = l.batch; k = l.outputs; n = l.inputs; a = l.delta; b = l.weights; c = state.delta; if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); } #ifdef GPU void pull_connected_layer(connected_layer l) { cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs); cuda_pull_array(l.biases_gpu, l.biases, l.outputs); cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs); } void push_connected_layer(connected_layer l) { cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs); cuda_push_array(l.biases_gpu, l.biases, l.outputs); cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs); cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs); } void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay) { axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1); axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1); } void forward_connected_layer_gpu(connected_layer l, network_state state) { int i; for(i = 0; i < l.batch; ++i){ copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1); } int m = l.batch; int k = l.inputs; int n = l.outputs; float * a = state.input; float * b = l.weights_gpu; float * c = l.output_gpu; gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); } void backward_connected_layer_gpu(connected_layer l, network_state state) { int i; gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); for(i = 0; i < l.batch; ++i){ axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1); } int m = l.inputs; int k = l.batch; int n = l.outputs; float * a = state.input; float * b = l.delta_gpu; float * c = l.weight_updates_gpu; gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); m = l.batch; k = l.outputs; n = l.inputs; a = l.delta_gpu; b = l.weights_gpu; c = state.delta; if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); } #endif