#include "gru_layer.h" #include "connected_layer.h" #include "utils.h" #include "cuda.h" #include "blas.h" #include "gemm.h" #include #include #include #include static void increment_layer(layer *l, int steps) { int num = l->outputs*l->batch*steps; l->output += num; l->delta += num; l->x += num; l->x_norm += num; #ifdef GPU l->output_gpu += num; l->delta_gpu += num; l->x_gpu += num; l->x_norm_gpu += num; #endif } layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) { fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs); batch = batch / steps; layer l = {0}; l.batch = batch; l.type = GRU; l.steps = steps; l.inputs = inputs; l.input_z_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.input_z_layer) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize); l.input_z_layer->batch = batch; l.state_z_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.state_z_layer) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize); l.state_z_layer->batch = batch; l.input_r_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.input_r_layer) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize); l.input_r_layer->batch = batch; l.state_r_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.state_r_layer) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize); l.state_r_layer->batch = batch; l.input_h_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.input_h_layer) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize); l.input_h_layer->batch = batch; l.state_h_layer = malloc(sizeof(layer)); fprintf(stderr, "\t\t"); *(l.state_h_layer) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize); l.state_h_layer->batch = batch; l.batch_normalize = batch_normalize; l.outputs = outputs; l.output = calloc(outputs*batch*steps, sizeof(float)); l.delta = calloc(outputs*batch*steps, sizeof(float)); l.state = calloc(outputs*batch, sizeof(float)); l.prev_state = calloc(outputs*batch, sizeof(float)); l.forgot_state = calloc(outputs*batch, sizeof(float)); l.forgot_delta = calloc(outputs*batch, sizeof(float)); l.r_cpu = calloc(outputs*batch, sizeof(float)); l.z_cpu = calloc(outputs*batch, sizeof(float)); l.h_cpu = calloc(outputs*batch, sizeof(float)); l.forward = forward_gru_layer; l.backward = backward_gru_layer; l.update = update_gru_layer; #ifdef GPU l.forward_gpu = forward_gru_layer_gpu; l.backward_gpu = backward_gru_layer_gpu; l.update_gpu = update_gru_layer_gpu; l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs); l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs); l.prev_state_gpu = cuda_make_array(l.output, batch*outputs); l.state_gpu = cuda_make_array(l.output, batch*outputs); l.output_gpu = cuda_make_array(l.output, batch*outputs*steps); l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps); l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs); l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs); l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs); #endif return l; } void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay) { update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); } void forward_gru_layer(layer l, network_state state) { network_state s = {0}; s.train = state.train; int i; layer input_z_layer = *(l.input_z_layer); layer input_r_layer = *(l.input_r_layer); layer input_h_layer = *(l.input_h_layer); layer state_z_layer = *(l.state_z_layer); layer state_r_layer = *(l.state_r_layer); layer state_h_layer = *(l.state_h_layer); fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1); if(state.train) { fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1); } for (i = 0; i < l.steps; ++i) { s.input = l.state; forward_connected_layer(state_z_layer, s); forward_connected_layer(state_r_layer, s); s.input = state.input; forward_connected_layer(input_z_layer, s); forward_connected_layer(input_r_layer, s); forward_connected_layer(input_h_layer, s); copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1); copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1); activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC); activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC); copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1); mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1); s.input = l.forgot_state; forward_connected_layer(state_h_layer, s); copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1); #ifdef USET activate_array(l.h_cpu, l.outputs*l.batch, TANH); #else activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC); #endif weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output); copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1); state.input += l.inputs*l.batch; l.output += l.outputs*l.batch; increment_layer(&input_z_layer, 1); increment_layer(&input_r_layer, 1); increment_layer(&input_h_layer, 1); increment_layer(&state_z_layer, 1); increment_layer(&state_r_layer, 1); increment_layer(&state_h_layer, 1); } } void backward_gru_layer(layer l, network_state state) { } #ifdef GPU void pull_gru_layer(layer l) { } void push_gru_layer(layer l) { } void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay) { update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay); update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay); update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay); update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay); update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay); update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay); } void forward_gru_layer_gpu(layer l, network_state state) { network_state s = {0}; s.train = state.train; int i; layer input_z_layer = *(l.input_z_layer); layer input_r_layer = *(l.input_r_layer); layer input_h_layer = *(l.input_h_layer); layer state_z_layer = *(l.state_z_layer); layer state_r_layer = *(l.state_r_layer); layer state_h_layer = *(l.state_h_layer); fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1); if(state.train) { fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1); } for (i = 0; i < l.steps; ++i) { s.input = l.state_gpu; forward_connected_layer_gpu(state_z_layer, s); forward_connected_layer_gpu(state_r_layer, s); s.input = state.input; forward_connected_layer_gpu(input_z_layer, s); forward_connected_layer_gpu(input_r_layer, s); forward_connected_layer_gpu(input_h_layer, s); copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1); mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); s.input = l.forgot_state_gpu; forward_connected_layer_gpu(state_h_layer, s); copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); #ifdef USET activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); #else activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); #endif weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu); copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1); state.input += l.inputs*l.batch; l.output_gpu += l.outputs*l.batch; increment_layer(&input_z_layer, 1); increment_layer(&input_r_layer, 1); increment_layer(&input_h_layer, 1); increment_layer(&state_z_layer, 1); increment_layer(&state_r_layer, 1); increment_layer(&state_h_layer, 1); } } void backward_gru_layer_gpu(layer l, network_state state) { network_state s = {0}; s.train = state.train; int i; layer input_z_layer = *(l.input_z_layer); layer input_r_layer = *(l.input_r_layer); layer input_h_layer = *(l.input_h_layer); layer state_z_layer = *(l.state_z_layer); layer state_r_layer = *(l.state_r_layer); layer state_h_layer = *(l.state_h_layer); increment_layer(&input_z_layer, l.steps - 1); increment_layer(&input_r_layer, l.steps - 1); increment_layer(&input_h_layer, l.steps - 1); increment_layer(&state_z_layer, l.steps - 1); increment_layer(&state_r_layer, l.steps - 1); increment_layer(&state_h_layer, l.steps - 1); state.input += l.inputs*l.batch*(l.steps-1); if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1); l.output_gpu += l.outputs*l.batch*(l.steps-1); l.delta_gpu += l.outputs*l.batch*(l.steps-1); for (i = l.steps-1; i >= 0; --i) { if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1); copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1); activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC); activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC); copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1); #ifdef USET activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); #else activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC); #endif weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu); #ifdef USET gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu); #else gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu); #endif copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1); copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1); mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1); fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1); s.input = l.forgot_state_gpu; s.delta = l.forgot_delta_gpu; backward_connected_layer_gpu(state_h_layer, s); if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu); mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu); gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu); copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1); gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu); copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1); s.input = l.prev_state_gpu; s.delta = prev_delta_gpu; backward_connected_layer_gpu(state_r_layer, s); backward_connected_layer_gpu(state_z_layer, s); s.input = state.input; s.delta = state.delta; backward_connected_layer_gpu(input_h_layer, s); backward_connected_layer_gpu(input_r_layer, s); backward_connected_layer_gpu(input_z_layer, s); state.input -= l.inputs*l.batch; if(state.delta) state.delta -= l.inputs*l.batch; l.output_gpu -= l.outputs*l.batch; l.delta_gpu -= l.outputs*l.batch; increment_layer(&input_z_layer, -1); increment_layer(&input_r_layer, -1); increment_layer(&input_h_layer, -1); increment_layer(&state_z_layer, -1); increment_layer(&state_r_layer, -1); increment_layer(&state_h_layer, -1); } } #endif