#include "crop_layer.h" #include "cuda.h" #include image get_crop_image(crop_layer layer) { int h = layer.crop_height; int w = layer.crop_width; int c = layer.c; return float_to_image(w,h,c,layer.output); } crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip) { fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c); crop_layer *layer = calloc(1, sizeof(crop_layer)); layer->batch = batch; layer->h = h; layer->w = w; layer->c = c; layer->flip = flip; layer->crop_width = crop_width; layer->crop_height = crop_height; layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float)); #ifdef GPU layer->output_gpu = cuda_make_array(layer->output, crop_width*crop_height*c*batch); #endif return layer; } void forward_crop_layer(const crop_layer layer, network_state state) { int i,j,c,b,row,col; int index; int count = 0; int flip = (layer.flip && rand()%2); int dh = rand()%(layer.h - layer.crop_height + 1); int dw = rand()%(layer.w - layer.crop_width + 1); if(!state.train){ flip = 0; dh = (layer.h - layer.crop_height)/2; dw = (layer.w - layer.crop_width)/2; } for(b = 0; b < layer.batch; ++b){ for(c = 0; c < layer.c; ++c){ for(i = 0; i < layer.crop_height; ++i){ for(j = 0; j < layer.crop_width; ++j){ if(flip){ col = layer.w - dw - j - 1; }else{ col = j + dw; } row = i + dh; index = col+layer.w*(row+layer.h*(c + layer.c*b)); layer.output[count++] = state.input[index]; } } } } }