#include "darknet.h" void train_tag(char *cfgfile, char *weightfile, int clear) { srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); char *backup_directory = "/home/pjreddie/backup/"; printf("%s\n", base); network *net = load_network(cfgfile, weightfile, clear); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); int imgs = 1024; list *plist = get_paths("/home/pjreddie/tag/train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; pthread_t load_thread; data train; data buffer; load_args args = {0}; args.w = net->w; args.h = net->h; args.min = net->w; args.max = net->max_crop; args.size = net->w; args.paths = paths; args.classes = net->outputs; args.n = imgs; args.m = N; args.d = &buffer; args.type = TAG_DATA; args.angle = net->angle; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; fprintf(stderr, "%d classes\n", net->outputs); load_thread = load_data_in_thread(args); int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); free_data(train); if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_data(buffer); free_network(net); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); } void test_tag(char *cfgfile, char *weightfile, char *filename) { network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); int i = 0; char **names = get_labels("data/tags.txt"); clock_t time; int indexes[10]; char buff[256]; char *input = buff; int size = net->w; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image r = resize_min(im, size); resize_network(net, r.w, r.h); printf("%d %d\n", r.w, r.h); float *X = r.data; time=clock(); float *predictions = network_predict(net, X); top_predictions(net, 10, indexes); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); for(i = 0; i < 10; ++i){ int index = indexes[i]; printf("%.1f%%: %s\n", predictions[index]*100, names[index]); } if(r.data != im.data) free_image(r); free_image(im); if (filename) break; } } void run_tag(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } int clear = find_arg(argc, argv, "-clear"); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5] : 0; if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear); else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename); }