#include "region_layer.h" #include "activations.h" #include "blas.h" #include "box.h" #include "cuda.h" #include "utils.h" #include #include #include #include layer make_region_layer(int batch, int w, int h, int n, int classes, int coords) { layer l = {0}; l.type = REGION; l.n = n; l.batch = batch; l.h = h; l.w = w; l.c = n*(classes + coords + 1); l.out_w = l.w; l.out_h = l.h; l.out_c = l.c; l.classes = classes; l.coords = coords; l.cost = calloc(1, sizeof(float)); l.biases = calloc(n*2, sizeof(float)); l.bias_updates = calloc(n*2, sizeof(float)); l.outputs = h*w*n*(classes + coords + 1); l.inputs = l.outputs; l.truths = 30*(l.coords + 1); l.delta = calloc(batch*l.outputs, sizeof(float)); l.output = calloc(batch*l.outputs, sizeof(float)); int i; for(i = 0; i < n*2; ++i){ l.biases[i] = .5; } l.forward = forward_region_layer; l.backward = backward_region_layer; #ifdef GPU l.forward_gpu = forward_region_layer_gpu; l.backward_gpu = backward_region_layer_gpu; l.output_gpu = cuda_make_array(l.output, batch*l.outputs); l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); #endif fprintf(stderr, "detection\n"); srand(0); return l; } void resize_region_layer(layer *l, int w, int h) { l->w = w; l->h = h; l->outputs = h*w*l->n*(l->classes + l->coords + 1); l->inputs = l->outputs; l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); #ifdef GPU cuda_free(l->delta_gpu); cuda_free(l->output_gpu); l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); #endif } box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h, int stride) { box b; b.x = (i + x[index + 0*stride]) / w; b.y = (j + x[index + 1*stride]) / h; b.w = exp(x[index + 2*stride]) * biases[2*n] / w; b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h; return b; } float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale, int stride) { box pred = get_region_box(x, biases, n, index, i, j, w, h, stride); float iou = box_iou(pred, truth); float tx = (truth.x*w - i); float ty = (truth.y*h - j); float tw = log(truth.w*w / biases[2*n]); float th = log(truth.h*h / biases[2*n + 1]); delta[index + 0*stride] = scale * (tx - x[index + 0*stride]); delta[index + 1*stride] = scale * (ty - x[index + 1*stride]); delta[index + 2*stride] = scale * (tw - x[index + 2*stride]); delta[index + 3*stride] = scale * (th - x[index + 3*stride]); return iou; } void delta_region_mask(float *truth, float *x, int n, int index, float *delta, int stride, int scale) { int i; for(i = 0; i < n; ++i){ delta[index + i*stride] = scale*(truth[i] - x[index + i*stride]); } } void delta_region_class(float *output, float *delta, int index, int class, int classes, tree *hier, float scale, int stride, float *avg_cat) { int i, n; if(hier){ float pred = 1; while(class >= 0){ pred *= output[index + stride*class]; int g = hier->group[class]; int offset = hier->group_offset[g]; for(i = 0; i < hier->group_size[g]; ++i){ delta[index + stride*(offset + i)] = scale * (0 - output[index + stride*(offset + i)]); } delta[index + stride*class] = scale * (1 - output[index + stride*class]); class = hier->parent[class]; } *avg_cat += pred; } else { if (delta[index]){ delta[index + stride*class] = scale * (1 - output[index + stride*class]); return; } for(n = 0; n < classes; ++n){ delta[index + stride*n] = scale * (((n == class)?1 : 0) - output[index + stride*n]); if(n == class) *avg_cat += output[index + stride*n]; } } } float logit(float x) { return log(x/(1.-x)); } float tisnan(float x) { return (x != x); } int entry_index(layer l, int batch, int location, int entry) { int n = location / (l.w*l.h); int loc = location % (l.w*l.h); return batch*l.outputs + n*l.w*l.h*(l.coords+l.classes+1) + entry*l.w*l.h + loc; } void forward_region_layer(const layer l, network net) { int i,j,b,t,n; memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float)); #ifndef GPU for (b = 0; b < l.batch; ++b){ for(n = 0; n < l.n; ++n){ int index = entry_index(l, b, n*l.w*l.h, 0); activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); index = entry_index(l, b, n*l.w*l.h, l.coords); if(!l.background) activate_array(l.output + index, l.w*l.h, LOGISTIC); index = entry_index(l, b, n*l.w*l.h, l.coords + 1); if(!l.softmax && !l.softmax_tree) activate_array(l.output + index, l.classes*l.w*l.h, LOGISTIC); } } if (l.softmax_tree){ int i; int count = l.coords + 1; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; softmax_cpu(net.input + count, group_size, l.batch, l.inputs, l.n*l.w*l.h, 1, l.n*l.w*l.h, l.temperature, l.output + count); count += group_size; } } else if (l.softmax){ int index = entry_index(l, 0, 0, l.coords + !l.background); softmax_cpu(net.input + index, l.classes + l.background, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output + index); } #endif memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); if(!net.train) return; float avg_iou = 0; float recall = 0; float avg_cat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; int class_count = 0; *(l.cost) = 0; for (b = 0; b < l.batch; ++b) { if(l.softmax_tree){ int onlyclass = 0; for(t = 0; t < 30; ++t){ box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1); if(!truth.x) break; int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords]; float maxp = 0; int maxi = 0; if(truth.x > 100000 && truth.y > 100000){ for(n = 0; n < l.n*l.w*l.h; ++n){ int class_index = entry_index(l, b, n, l.coords + 1); int obj_index = entry_index(l, b, n, l.coords); float scale = l.output[obj_index]; l.delta[obj_index] = l.noobject_scale * (0 - l.output[obj_index]); float p = scale*get_hierarchy_probability(l.output + class_index, l.softmax_tree, class, l.w*l.h); if(p > maxp){ maxp = p; maxi = n; } } int class_index = entry_index(l, b, maxi, l.coords + 1); int obj_index = entry_index(l, b, maxi, l.coords); delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat); if(l.output[obj_index] < .3) l.delta[obj_index] = l.object_scale * (.3 - l.output[obj_index]); else l.delta[obj_index] = 0; l.delta[obj_index] = 0; ++class_count; onlyclass = 1; break; } } if(onlyclass) continue; } for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w; ++i) { for (n = 0; n < l.n; ++n) { int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h); float best_iou = 0; for(t = 0; t < 30; ++t){ box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1); if(!truth.x) break; float iou = box_iou(pred, truth); if (iou > best_iou) { best_iou = iou; } } int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, l.coords); avg_anyobj += l.output[obj_index]; l.delta[obj_index] = l.noobject_scale * (0 - l.output[obj_index]); if(l.background) l.delta[obj_index] = l.noobject_scale * (1 - l.output[obj_index]); if (best_iou > l.thresh) { l.delta[obj_index] = 0; } if(*(net.seen) < 12800){ box truth = {0}; truth.x = (i + .5)/l.w; truth.y = (j + .5)/l.h; truth.w = l.biases[2*n]/l.w; truth.h = l.biases[2*n+1]/l.h; delta_region_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, l.delta, .01, l.w*l.h); } } } } for(t = 0; t < 30; ++t){ box truth = float_to_box(net.truth + t*(l.coords + 1) + b*l.truths, 1); if(!truth.x) break; float best_iou = 0; int best_n = 0; i = (truth.x * l.w); j = (truth.y * l.h); //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h); box truth_shift = truth; truth_shift.x = 0; truth_shift.y = 0; //printf("index %d %d\n",i, j); for(n = 0; n < l.n; ++n){ int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); box pred = get_region_box(l.output, l.biases, n, box_index, i, j, l.w, l.h, l.w*l.h); if(l.bias_match){ pred.w = l.biases[2*n]/l.w; pred.h = l.biases[2*n+1]/l.h; } //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h); pred.x = 0; pred.y = 0; float iou = box_iou(pred, truth_shift); if (iou > best_iou){ best_iou = iou; best_n = n; } } //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h); int box_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 0); float iou = delta_region_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, l.delta, l.coord_scale * (2 - truth.w*truth.h), l.w*l.h); if(l.coords > 4){ int mask_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, 4); delta_region_mask(net.truth + t*(l.coords + 1) + b*l.truths + 5, l.output, l.coords - 4, mask_index, l.delta, l.w*l.h, l.mask_scale); } if(iou > .5) recall += 1; avg_iou += iou; //l.delta[best_index + 4] = iou - l.output[best_index + 4]; int obj_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords); avg_obj += l.output[obj_index]; l.delta[obj_index] = l.object_scale * (1 - l.output[obj_index]); if (l.rescore) { l.delta[obj_index] = l.object_scale * (iou - l.output[obj_index]); } if(l.background){ l.delta[obj_index] = l.object_scale * (0 - l.output[obj_index]); } int class = net.truth[t*(l.coords + 1) + b*l.truths + l.coords]; if (l.map) class = l.map[class]; int class_index = entry_index(l, b, best_n*l.w*l.h + j*l.w + i, l.coords + 1); delta_region_class(l.output, l.delta, class_index, class, l.classes, l.softmax_tree, l.class_scale, l.w*l.h, &avg_cat); ++count; ++class_count; } } //printf("\n"); *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); } void backward_region_layer(const layer l, network net) { /* int b; int size = l.coords + l.classes + 1; for (b = 0; b < l.batch*l.n; ++b){ int index = (b*size + 4)*l.w*l.h; gradient_array(l.output + index, l.w*l.h, LOGISTIC, l.delta + index); } axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1); */ } void correct_region_boxes(box *boxes, int n, int w, int h, int netw, int neth, int relative) { int i; int new_w=0; int new_h=0; if (((float)netw/w) < ((float)neth/h)) { new_w = netw; new_h = (h * netw)/w; } else { new_h = neth; new_w = (w * neth)/h; } for (i = 0; i < n; ++i){ box b = boxes[i]; b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); b.w *= (float)netw/new_w; b.h *= (float)neth/new_h; if(!relative){ b.x *= w; b.w *= w; b.y *= h; b.h *= h; } boxes[i] = b; } } void get_region_boxes(layer l, int w, int h, int netw, int neth, float thresh, float **probs, box *boxes, float **masks, int only_objectness, int *map, float tree_thresh, int relative) { int i,j,n,z; float *predictions = l.output; if (l.batch == 2) { float *flip = l.output + l.outputs; for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w/2; ++i) { for (n = 0; n < l.n; ++n) { for(z = 0; z < l.classes + l.coords + 1; ++z){ int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); float swap = flip[i1]; flip[i1] = flip[i2]; flip[i2] = swap; if(z == 0){ flip[i1] = -flip[i1]; flip[i2] = -flip[i2]; } } } } } for(i = 0; i < l.outputs; ++i){ l.output[i] = (l.output[i] + flip[i])/2.; } } for (i = 0; i < l.w*l.h; ++i){ int row = i / l.w; int col = i % l.w; for(n = 0; n < l.n; ++n){ int index = n*l.w*l.h + i; for(j = 0; j < l.classes; ++j){ probs[index][j] = 0; } int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords); int box_index = entry_index(l, 0, n*l.w*l.h + i, 0); int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4); float scale = l.background ? 1 : predictions[obj_index]; boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h, l.w*l.h); if(masks){ for(j = 0; j < l.coords - 4; ++j){ masks[index][j] = l.output[mask_index + j*l.w*l.h]; } } int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background); if(l.softmax_tree){ hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0, l.w*l.h); if(map){ for(j = 0; j < 200; ++j){ int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]); float prob = scale*predictions[class_index]; probs[index][j] = (prob > thresh) ? prob : 0; } } else { int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h); probs[index][j] = (scale > thresh) ? scale : 0; probs[index][l.classes] = scale; } } else { float max = 0; for(j = 0; j < l.classes; ++j){ int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j); float prob = scale*predictions[class_index]; probs[index][j] = (prob > thresh) ? prob : 0; if(prob > max) max = prob; // TODO REMOVE // if (j == 56 ) probs[index][j] = 0; /* if (j != 0) probs[index][j] = 0; int blacklist[] = {121, 497, 482, 504, 122, 518,481, 418, 542, 491, 914, 478, 120, 510,500}; int bb; for (bb = 0; bb < sizeof(blacklist)/sizeof(int); ++bb){ if(index == blacklist[bb]) probs[index][j] = 0; } */ } probs[index][l.classes] = max; } if(only_objectness){ probs[index][0] = scale; } } } correct_region_boxes(boxes, l.w*l.h*l.n, w, h, netw, neth, relative); } #ifdef GPU void forward_region_layer_gpu(const layer l, network net) { copy_gpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1); int b, n; for (b = 0; b < l.batch; ++b){ for(n = 0; n < l.n; ++n){ int index = entry_index(l, b, n*l.w*l.h, 0); activate_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); if(l.coords > 4){ index = entry_index(l, b, n*l.w*l.h, 4); activate_array_gpu(l.output_gpu + index, (l.coords - 4)*l.w*l.h, LOGISTIC); } index = entry_index(l, b, n*l.w*l.h, l.coords); if(!l.background) activate_array_gpu(l.output_gpu + index, l.w*l.h, LOGISTIC); index = entry_index(l, b, n*l.w*l.h, l.coords + 1); if(!l.softmax && !l.softmax_tree) activate_array_gpu(l.output_gpu + index, l.classes*l.w*l.h, LOGISTIC); } } if (l.softmax_tree){ int index = entry_index(l, 0, 0, l.coords + 1); softmax_tree(net.input_gpu + index, l.w*l.h, l.batch*l.n, l.inputs/l.n, 1, l.output_gpu + index, *l.softmax_tree); /* int mmin = 9000; int mmax = 0; int i; for(i = 0; i < l.softmax_tree->groups; ++i){ int group_size = l.softmax_tree->group_size[i]; if (group_size < mmin) mmin = group_size; if (group_size > mmax) mmax = group_size; } //printf("%d %d %d \n", l.softmax_tree->groups, mmin, mmax); */ /* // TIMING CODE int zz; int number = 1000; int count = 0; int i; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; count += group_size; } printf("%d %d\n", l.softmax_tree->groups, count); { double then = what_time_is_it_now(); for(zz = 0; zz < number; ++zz){ int index = entry_index(l, 0, 0, 5); softmax_tree(net.input_gpu + index, l.w*l.h, l.batch*l.n, l.inputs/l.n, 1, l.output_gpu + index, *l.softmax_tree); } cudaDeviceSynchronize(); printf("Good GPU Timing: %f\n", what_time_is_it_now() - then); } { double then = what_time_is_it_now(); for(zz = 0; zz < number; ++zz){ int i; int count = 5; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; int index = entry_index(l, 0, 0, count); softmax_gpu(net.input_gpu + index, group_size, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu + index); count += group_size; } } cudaDeviceSynchronize(); printf("Bad GPU Timing: %f\n", what_time_is_it_now() - then); } { double then = what_time_is_it_now(); for(zz = 0; zz < number; ++zz){ int i; int count = 5; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; softmax_cpu(net.input + count, group_size, l.batch, l.inputs, l.n*l.w*l.h, 1, l.n*l.w*l.h, l.temperature, l.output + count); count += group_size; } } cudaDeviceSynchronize(); printf("CPU Timing: %f\n", what_time_is_it_now() - then); } */ /* int i; int count = 5; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; int index = entry_index(l, 0, 0, count); softmax_gpu(net.input_gpu + index, group_size, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu + index); count += group_size; } */ } else if (l.softmax) { int index = entry_index(l, 0, 0, l.coords + !l.background); //printf("%d\n", index); softmax_gpu(net.input_gpu + index, l.classes + l.background, l.batch*l.n, l.inputs/l.n, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu + index); } if(!net.train || l.onlyforward){ cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); return; } cuda_pull_array(l.output_gpu, net.input, l.batch*l.inputs); forward_region_layer(l, net); //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); if(!net.train) return; cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); } void backward_region_layer_gpu(const layer l, network net) { int b, n; for (b = 0; b < l.batch; ++b){ for(n = 0; n < l.n; ++n){ int index = entry_index(l, b, n*l.w*l.h, 0); gradient_array_gpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC, l.delta_gpu + index); if(l.coords > 4){ index = entry_index(l, b, n*l.w*l.h, 4); gradient_array_gpu(l.output_gpu + index, (l.coords - 4)*l.w*l.h, LOGISTIC, l.delta_gpu + index); } index = entry_index(l, b, n*l.w*l.h, l.coords); if(!l.background) gradient_array_gpu(l.output_gpu + index, l.w*l.h, LOGISTIC, l.delta_gpu + index); } } axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1); } #endif void zero_objectness(layer l) { int i, n; for (i = 0; i < l.w*l.h; ++i){ for(n = 0; n < l.n; ++n){ int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords); l.output[obj_index] = 0; } } }