#include "darknet.h" #include #include #include extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen); extern void run_yolo(int argc, char **argv); extern void run_detector(int argc, char **argv); extern void run_coco(int argc, char **argv); extern void run_nightmare(int argc, char **argv); extern void run_classifier(int argc, char **argv); extern void run_regressor(int argc, char **argv); extern void run_segmenter(int argc, char **argv); extern void run_isegmenter(int argc, char **argv); extern void run_char_rnn(int argc, char **argv); extern void run_tag(int argc, char **argv); extern void run_cifar(int argc, char **argv); extern void run_go(int argc, char **argv); extern void run_art(int argc, char **argv); extern void run_super(int argc, char **argv); extern void run_lsd(int argc, char **argv); void average(int argc, char *argv[]) { char *cfgfile = argv[2]; char *outfile = argv[3]; gpu_index = -1; network *net = parse_network_cfg(cfgfile); network *sum = parse_network_cfg(cfgfile); char *weightfile = argv[4]; load_weights(sum, weightfile); int i, j; int n = argc - 5; for(i = 0; i < n; ++i){ weightfile = argv[i+5]; load_weights(net, weightfile); for(j = 0; j < net->n; ++j){ layer l = net->layers[j]; layer out = sum->layers[j]; if(l.type == CONVOLUTIONAL){ int num = l.n*l.c*l.size*l.size; axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); axpy_cpu(num, 1, l.weights, 1, out.weights, 1); if(l.batch_normalize){ axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1); axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1); axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1); } } if(l.type == CONNECTED){ axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); } } } n = n+1; for(j = 0; j < net->n; ++j){ layer l = sum->layers[j]; if(l.type == CONVOLUTIONAL){ int num = l.n*l.c*l.size*l.size; scal_cpu(l.n, 1./n, l.biases, 1); scal_cpu(num, 1./n, l.weights, 1); if(l.batch_normalize){ scal_cpu(l.n, 1./n, l.scales, 1); scal_cpu(l.n, 1./n, l.rolling_mean, 1); scal_cpu(l.n, 1./n, l.rolling_variance, 1); } } if(l.type == CONNECTED){ scal_cpu(l.outputs, 1./n, l.biases, 1); scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); } } save_weights(sum, outfile); } long numops(network *net) { int i; long ops = 0; for(i = 0; i < net->n; ++i){ layer l = net->layers[i]; if(l.type == CONVOLUTIONAL){ ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w; } else if(l.type == CONNECTED){ ops += 2l * l.inputs * l.outputs; } else if (l.type == RNN){ ops += 2l * l.input_layer->inputs * l.input_layer->outputs; ops += 2l * l.self_layer->inputs * l.self_layer->outputs; ops += 2l * l.output_layer->inputs * l.output_layer->outputs; } else if (l.type == GRU){ ops += 2l * l.uz->inputs * l.uz->outputs; ops += 2l * l.uh->inputs * l.uh->outputs; ops += 2l * l.ur->inputs * l.ur->outputs; ops += 2l * l.wz->inputs * l.wz->outputs; ops += 2l * l.wh->inputs * l.wh->outputs; ops += 2l * l.wr->inputs * l.wr->outputs; } else if (l.type == LSTM){ ops += 2l * l.uf->inputs * l.uf->outputs; ops += 2l * l.ui->inputs * l.ui->outputs; ops += 2l * l.ug->inputs * l.ug->outputs; ops += 2l * l.uo->inputs * l.uo->outputs; ops += 2l * l.wf->inputs * l.wf->outputs; ops += 2l * l.wi->inputs * l.wi->outputs; ops += 2l * l.wg->inputs * l.wg->outputs; ops += 2l * l.wo->inputs * l.wo->outputs; } } return ops; } void speed(char *cfgfile, int tics) { if (tics == 0) tics = 1000; network *net = parse_network_cfg(cfgfile); set_batch_network(net, 1); int i; double time=what_time_is_it_now(); image im = make_image(net->w, net->h, net->c*net->batch); for(i = 0; i < tics; ++i){ network_predict(net, im.data); } double t = what_time_is_it_now() - time; long ops = numops(net); printf("\n%d evals, %f Seconds\n", tics, t); printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); printf("FLOPS: %.2f Bn\n", (float)ops/1000000000.*tics/t); printf("Speed: %f sec/eval\n", t/tics); printf("Speed: %f Hz\n", tics/t); } void operations(char *cfgfile) { gpu_index = -1; network *net = parse_network_cfg(cfgfile); long ops = numops(net); printf("Floating Point Operations: %ld\n", ops); printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); } void oneoff(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network *net = parse_network_cfg(cfgfile); int oldn = net->layers[net->n - 2].n; int c = net->layers[net->n - 2].c; scal_cpu(oldn*c, .1, net->layers[net->n - 2].weights, 1); scal_cpu(oldn, 0, net->layers[net->n - 2].biases, 1); net->layers[net->n - 2].n = 11921; net->layers[net->n - 2].biases += 5; net->layers[net->n - 2].weights += 5*c; if(weightfile){ load_weights(net, weightfile); } net->layers[net->n - 2].biases -= 5; net->layers[net->n - 2].weights -= 5*c; net->layers[net->n - 2].n = oldn; printf("%d\n", oldn); layer l = net->layers[net->n - 2]; copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1); copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1); copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1); copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1); *net->seen = 0; save_weights(net, outfile); } void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l) { gpu_index = -1; network *net = parse_network_cfg(cfgfile); if(weightfile){ load_weights_upto(net, weightfile, 0, net->n); load_weights_upto(net, weightfile, l, net->n); } *net->seen = 0; save_weights_upto(net, outfile, net->n); } void partial(char *cfgfile, char *weightfile, char *outfile, int max) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 1); save_weights_upto(net, outfile, max); } void print_weights(char *cfgfile, char *weightfile, int n) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 1); layer l = net->layers[n]; int i, j; //printf("["); for(i = 0; i < l.n; ++i){ //printf("["); for(j = 0; j < l.size*l.size*l.c; ++j){ //if(j > 0) printf(","); printf("%g ", l.weights[i*l.size*l.size*l.c + j]); } printf("\n"); //printf("]%s\n", (i == l.n-1)?"":","); } //printf("]"); } void rescale_net(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 0); int i; for(i = 0; i < net->n; ++i){ layer l = net->layers[i]; if(l.type == CONVOLUTIONAL){ rescale_weights(l, 2, -.5); break; } } save_weights(net, outfile); } void rgbgr_net(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 0); int i; for(i = 0; i < net->n; ++i){ layer l = net->layers[i]; if(l.type == CONVOLUTIONAL){ rgbgr_weights(l); break; } } save_weights(net, outfile); } void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 0); int i; for (i = 0; i < net->n; ++i) { layer l = net->layers[i]; if (l.type == CONVOLUTIONAL && l.batch_normalize) { denormalize_convolutional_layer(l); } if (l.type == CONNECTED && l.batch_normalize) { denormalize_connected_layer(l); } if (l.type == GRU && l.batch_normalize) { denormalize_connected_layer(*l.input_z_layer); denormalize_connected_layer(*l.input_r_layer); denormalize_connected_layer(*l.input_h_layer); denormalize_connected_layer(*l.state_z_layer); denormalize_connected_layer(*l.state_r_layer); denormalize_connected_layer(*l.state_h_layer); } } save_weights(net, outfile); } layer normalize_layer(layer l, int n) { int j; l.batch_normalize=1; l.scales = calloc(n, sizeof(float)); for(j = 0; j < n; ++j){ l.scales[j] = 1; } l.rolling_mean = calloc(n, sizeof(float)); l.rolling_variance = calloc(n, sizeof(float)); return l; } void normalize_net(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 0); int i; for(i = 0; i < net->n; ++i){ layer l = net->layers[i]; if(l.type == CONVOLUTIONAL && !l.batch_normalize){ net->layers[i] = normalize_layer(l, l.n); } if (l.type == CONNECTED && !l.batch_normalize) { net->layers[i] = normalize_layer(l, l.outputs); } if (l.type == GRU && l.batch_normalize) { *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs); *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs); *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs); *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs); *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs); *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs); net->layers[i].batch_normalize=1; } } save_weights(net, outfile); } void statistics_net(char *cfgfile, char *weightfile) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 0); int i; for (i = 0; i < net->n; ++i) { layer l = net->layers[i]; if (l.type == CONNECTED && l.batch_normalize) { printf("Connected Layer %d\n", i); statistics_connected_layer(l); } if (l.type == GRU && l.batch_normalize) { printf("GRU Layer %d\n", i); printf("Input Z\n"); statistics_connected_layer(*l.input_z_layer); printf("Input R\n"); statistics_connected_layer(*l.input_r_layer); printf("Input H\n"); statistics_connected_layer(*l.input_h_layer); printf("State Z\n"); statistics_connected_layer(*l.state_z_layer); printf("State R\n"); statistics_connected_layer(*l.state_r_layer); printf("State H\n"); statistics_connected_layer(*l.state_h_layer); } printf("\n"); } } void denormalize_net(char *cfgfile, char *weightfile, char *outfile) { gpu_index = -1; network *net = load_network(cfgfile, weightfile, 0); int i; for (i = 0; i < net->n; ++i) { layer l = net->layers[i]; if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) { denormalize_convolutional_layer(l); net->layers[i].batch_normalize=0; } if (l.type == CONNECTED && l.batch_normalize) { denormalize_connected_layer(l); net->layers[i].batch_normalize=0; } if (l.type == GRU && l.batch_normalize) { denormalize_connected_layer(*l.input_z_layer); denormalize_connected_layer(*l.input_r_layer); denormalize_connected_layer(*l.input_h_layer); denormalize_connected_layer(*l.state_z_layer); denormalize_connected_layer(*l.state_r_layer); denormalize_connected_layer(*l.state_h_layer); l.input_z_layer->batch_normalize = 0; l.input_r_layer->batch_normalize = 0; l.input_h_layer->batch_normalize = 0; l.state_z_layer->batch_normalize = 0; l.state_r_layer->batch_normalize = 0; l.state_h_layer->batch_normalize = 0; net->layers[i].batch_normalize=0; } } save_weights(net, outfile); } void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix) { network *net = load_network(cfgfile, weightfile, 0); image *ims = get_weights(net->layers[0]); int n = net->layers[0].n; int z; for(z = 0; z < num; ++z){ image im = make_image(h, w, 3); fill_image(im, .5); int i; for(i = 0; i < 100; ++i){ image r = copy_image(ims[rand()%n]); rotate_image_cw(r, rand()%4); random_distort_image(r, 1, 1.5, 1.5); int dx = rand()%(w-r.w); int dy = rand()%(h-r.h); ghost_image(r, im, dx, dy); free_image(r); } char buff[256]; sprintf(buff, "%s/gen_%d", prefix, z); save_image(im, buff); free_image(im); } } void visualize(char *cfgfile, char *weightfile) { network *net = load_network(cfgfile, weightfile, 0); visualize_network(net); } int main(int argc, char **argv) { //test_resize("data/bad.jpg"); //test_box(); //test_convolutional_layer(); if(argc < 2){ fprintf(stderr, "usage: %s \n", argv[0]); return 0; } gpu_index = find_int_arg(argc, argv, "-i", 0); if(find_arg(argc, argv, "-nogpu")) { gpu_index = -1; } #ifndef GPU gpu_index = -1; #else if(gpu_index >= 0){ cuda_set_device(gpu_index); } #endif if (0 == strcmp(argv[1], "average")){ average(argc, argv); } else if (0 == strcmp(argv[1], "yolo")){ run_yolo(argc, argv); } else if (0 == strcmp(argv[1], "super")){ run_super(argc, argv); } else if (0 == strcmp(argv[1], "lsd")){ run_lsd(argc, argv); } else if (0 == strcmp(argv[1], "detector")){ run_detector(argc, argv); } else if (0 == strcmp(argv[1], "detect")){ float thresh = find_float_arg(argc, argv, "-thresh", .5); char *filename = (argc > 4) ? argv[4]: 0; char *outfile = find_char_arg(argc, argv, "-out", 0); int fullscreen = find_arg(argc, argv, "-fullscreen"); test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen); } else if (0 == strcmp(argv[1], "cifar")){ run_cifar(argc, argv); } else if (0 == strcmp(argv[1], "go")){ run_go(argc, argv); } else if (0 == strcmp(argv[1], "rnn")){ run_char_rnn(argc, argv); } else if (0 == strcmp(argv[1], "coco")){ run_coco(argc, argv); } else if (0 == strcmp(argv[1], "classify")){ predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); } else if (0 == strcmp(argv[1], "classifier")){ run_classifier(argc, argv); } else if (0 == strcmp(argv[1], "regressor")){ run_regressor(argc, argv); } else if (0 == strcmp(argv[1], "isegmenter")){ run_isegmenter(argc, argv); } else if (0 == strcmp(argv[1], "segmenter")){ run_segmenter(argc, argv); } else if (0 == strcmp(argv[1], "art")){ run_art(argc, argv); } else if (0 == strcmp(argv[1], "tag")){ run_tag(argc, argv); } else if (0 == strcmp(argv[1], "3d")){ composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0); } else if (0 == strcmp(argv[1], "test")){ test_resize(argv[2]); } else if (0 == strcmp(argv[1], "nightmare")){ run_nightmare(argc, argv); } else if (0 == strcmp(argv[1], "rgbgr")){ rgbgr_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "reset")){ reset_normalize_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "denormalize")){ denormalize_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "statistics")){ statistics_net(argv[2], argv[3]); } else if (0 == strcmp(argv[1], "normalize")){ normalize_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "rescale")){ rescale_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "ops")){ operations(argv[2]); } else if (0 == strcmp(argv[1], "speed")){ speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); } else if (0 == strcmp(argv[1], "oneoff")){ oneoff(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "oneoff2")){ oneoff2(argv[2], argv[3], argv[4], atoi(argv[5])); } else if (0 == strcmp(argv[1], "print")){ print_weights(argv[2], argv[3], atoi(argv[4])); } else if (0 == strcmp(argv[1], "partial")){ partial(argv[2], argv[3], argv[4], atoi(argv[5])); } else if (0 == strcmp(argv[1], "average")){ average(argc, argv); } else if (0 == strcmp(argv[1], "visualize")){ visualize(argv[2], (argc > 3) ? argv[3] : 0); } else if (0 == strcmp(argv[1], "mkimg")){ mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]); } else if (0 == strcmp(argv[1], "imtest")){ test_resize(argv[2]); } else { fprintf(stderr, "Not an option: %s\n", argv[1]); } return 0; }