#include #include #include #include "network.h" #include "image.h" #include "data.h" #include "utils.h" #include "blas.h" #include "crop_layer.h" #include "connected_layer.h" #include "gru_layer.h" #include "rnn_layer.h" #include "crnn_layer.h" #include "local_layer.h" #include "convolutional_layer.h" #include "activation_layer.h" #include "detection_layer.h" #include "region_layer.h" #include "normalization_layer.h" #include "batchnorm_layer.h" #include "maxpool_layer.h" #include "reorg_layer.h" #include "avgpool_layer.h" #include "cost_layer.h" #include "softmax_layer.h" #include "dropout_layer.h" #include "route_layer.h" #include "shortcut_layer.h" #include "parser.h" #include "data.h" load_args get_base_args(network net) { load_args args = {0}; args.w = net.w; args.h = net.h; args.size = net.w; args.min = net.min_crop; args.max = net.max_crop; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.center = net.center; args.saturation = net.saturation; args.hue = net.hue; return args; } network load_network(char *cfg, char *weights, int clear) { network net = parse_network_cfg(cfg); if(weights && weights[0] != 0){ load_weights(&net, weights); } if(clear) *net.seen = 0; return net; } network *load_network_p(char *cfg, char *weights, int clear) { network *net = calloc(1, sizeof(network)); *net = load_network(cfg, weights, clear); return net; } size_t get_current_batch(network net) { size_t batch_num = (*net.seen)/(net.batch*net.subdivisions); return batch_num; } void reset_momentum(network net) { if (net.momentum == 0) return; net.learning_rate = 0; net.momentum = 0; net.decay = 0; #ifdef GPU //if(net.gpu_index >= 0) update_network_gpu(net); #endif } float get_current_rate(network net) { size_t batch_num = get_current_batch(net); int i; float rate; if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); switch (net.policy) { case CONSTANT: return net.learning_rate; case STEP: return net.learning_rate * pow(net.scale, batch_num/net.step); case STEPS: rate = net.learning_rate; for(i = 0; i < net.num_steps; ++i){ if(net.steps[i] > batch_num) return rate; rate *= net.scales[i]; //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net); } return rate; case EXP: return net.learning_rate * pow(net.gamma, batch_num); case POLY: return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); case RANDOM: return net.learning_rate * pow(rand_uniform(0,1), net.power); case SIG: return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); default: fprintf(stderr, "Policy is weird!\n"); return net.learning_rate; } } char *get_layer_string(LAYER_TYPE a) { switch(a){ case CONVOLUTIONAL: return "convolutional"; case ACTIVE: return "activation"; case LOCAL: return "local"; case DECONVOLUTIONAL: return "deconvolutional"; case CONNECTED: return "connected"; case RNN: return "rnn"; case GRU: return "gru"; case LSTM: return "lstm"; case CRNN: return "crnn"; case MAXPOOL: return "maxpool"; case REORG: return "reorg"; case AVGPOOL: return "avgpool"; case SOFTMAX: return "softmax"; case DETECTION: return "detection"; case REGION: return "region"; case DROPOUT: return "dropout"; case CROP: return "crop"; case COST: return "cost"; case ROUTE: return "route"; case SHORTCUT: return "shortcut"; case NORMALIZATION: return "normalization"; case BATCHNORM: return "batchnorm"; default: break; } return "none"; } network make_network(int n) { network net = {0}; net.n = n; net.layers = calloc(net.n, sizeof(layer)); net.seen = calloc(1, sizeof(int)); net.t = calloc(1, sizeof(int)); net.cost = calloc(1, sizeof(float)); return net; } void forward_network(network net) { int i; for(i = 0; i < net.n; ++i){ net.index = i; layer l = net.layers[i]; if(l.delta){ fill_cpu(l.outputs * l.batch, 0, l.delta, 1); } l.forward(l, net); net.input = l.output; if(l.truth) { net.truth = l.output; } } calc_network_cost(net); } void update_network(network net) { int i; update_args a = {0}; a.batch = net.batch*net.subdivisions; a.learning_rate = get_current_rate(net); a.momentum = net.momentum; a.decay = net.decay; a.adam = net.adam; a.B1 = net.B1; a.B2 = net.B2; a.eps = net.eps; ++*net.t; a.t = *net.t; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.update){ l.update(l, a); } } } void calc_network_cost(network net) { int i; float sum = 0; int count = 0; for(i = 0; i < net.n; ++i){ if(net.layers[i].cost){ sum += net.layers[i].cost[0]; ++count; } } *net.cost = sum/count; } int get_predicted_class_network(network net) { return max_index(net.output, net.outputs); } void backward_network(network net) { int i; network orig = net; for(i = net.n-1; i >= 0; --i){ layer l = net.layers[i]; if(l.stopbackward) break; if(i == 0){ net = orig; }else{ layer prev = net.layers[i-1]; net.input = prev.output; net.delta = prev.delta; } net.index = i; l.backward(l, net); } } float train_network_datum(network net) { #ifdef GPU if(gpu_index >= 0) return train_network_datum_gpu(net); #endif *net.seen += net.batch; net.train = 1; forward_network(net); backward_network(net); float error = *net.cost; if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); return error; } float train_network_sgd(network net, data d, int n) { int batch = net.batch; int i; float sum = 0; for(i = 0; i < n; ++i){ get_random_batch(d, batch, net.input, net.truth); float err = train_network_datum(net); sum += err; } return (float)sum/(n*batch); } float train_network(network net, data d) { assert(d.X.rows % net.batch == 0); int batch = net.batch; int n = d.X.rows / batch; int i; float sum = 0; for(i = 0; i < n; ++i){ get_next_batch(d, batch, i*batch, net.input, net.truth); float err = train_network_datum(net); sum += err; } return (float)sum/(n*batch); } void set_batch_network(network *net, int b) { net->batch = b; int i; for(i = 0; i < net->n; ++i){ net->layers[i].batch = b; #ifdef CUDNN if(net->layers[i].type == CONVOLUTIONAL){ cudnn_convolutional_setup(net->layers + i); } if(net->layers[i].type == DECONVOLUTIONAL){ layer *l = net->layers + i; cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, l->out_h, l->out_w); cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); } #endif } } int resize_network(network *net, int w, int h) { #ifdef GPU cuda_set_device(net->gpu_index); cuda_free(net->workspace); #endif int i; //if(w == net->w && h == net->h) return 0; net->w = w; net->h = h; int inputs = 0; size_t workspace_size = 0; //fprintf(stderr, "Resizing to %d x %d...\n", w, h); //fflush(stderr); for (i = 0; i < net->n; ++i){ layer l = net->layers[i]; if(l.type == CONVOLUTIONAL){ resize_convolutional_layer(&l, w, h); }else if(l.type == CROP){ resize_crop_layer(&l, w, h); }else if(l.type == MAXPOOL){ resize_maxpool_layer(&l, w, h); }else if(l.type == REGION){ resize_region_layer(&l, w, h); }else if(l.type == ROUTE){ resize_route_layer(&l, net); }else if(l.type == REORG){ resize_reorg_layer(&l, w, h); }else if(l.type == AVGPOOL){ resize_avgpool_layer(&l, w, h); }else if(l.type == NORMALIZATION){ resize_normalization_layer(&l, w, h); }else if(l.type == COST){ resize_cost_layer(&l, inputs); }else{ error("Cannot resize this type of layer"); } if(l.workspace_size > workspace_size) workspace_size = l.workspace_size; inputs = l.outputs; net->layers[i] = l; w = l.out_w; h = l.out_h; if(l.type == AVGPOOL) break; } layer out = get_network_output_layer(*net); net->inputs = net->layers[0].inputs; net->outputs = out.outputs; net->truths = out.outputs; if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths; net->output = out.output; free(net->input); free(net->truth); net->input = calloc(net->inputs*net->batch, sizeof(float)); net->truth = calloc(net->truths*net->batch, sizeof(float)); #ifdef GPU if(gpu_index >= 0){ cuda_free(net->input_gpu); cuda_free(net->truth_gpu); net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch); net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch); net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); }else { free(net->workspace); net->workspace = calloc(1, workspace_size); } #else free(net->workspace); net->workspace = calloc(1, workspace_size); #endif //fprintf(stderr, " Done!\n"); return 0; } detection_layer get_network_detection_layer(network net) { int i; for(i = 0; i < net.n; ++i){ if(net.layers[i].type == DETECTION){ return net.layers[i]; } } fprintf(stderr, "Detection layer not found!!\n"); detection_layer l = {0}; return l; } image get_network_image_layer(network net, int i) { layer l = net.layers[i]; #ifdef GPU //cuda_pull_array(l.output_gpu, l.output, l.outputs); #endif if (l.out_w && l.out_h && l.out_c){ return float_to_image(l.out_w, l.out_h, l.out_c, l.output); } image def = {0}; return def; } image get_network_image(network net) { int i; for(i = net.n-1; i >= 0; --i){ image m = get_network_image_layer(net, i); if(m.h != 0) return m; } image def = {0}; return def; } void visualize_network(network net) { image *prev = 0; int i; char buff[256]; for(i = 0; i < net.n; ++i){ sprintf(buff, "Layer %d", i); layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ prev = visualize_convolutional_layer(l, buff, prev); } } } void top_predictions(network net, int k, int *index) { top_k(net.output, net.outputs, k, index); } float *network_predict(network net, float *input) { #ifdef GPU if(gpu_index >= 0) return network_predict_gpu(net, input); #endif net.input = input; net.truth = 0; net.train = 0; net.delta = 0; forward_network(net); return net.output; } float *network_predict_p(network *net, float *input) { return network_predict(*net, input); } float *network_predict_image(network *net, image im) { image imr = letterbox_image(im, net->w, net->h); set_batch_network(net, 1); float *p = network_predict(*net, imr.data); free_image(imr); return p; } int network_width(network *net){return net->w;} int network_height(network *net){return net->h;} matrix network_predict_data_multi(network net, data test, int n) { int i,j,b,m; int k = net.outputs; matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.rows, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } for(m = 0; m < n; ++m){ float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] += out[j+b*k]/n; } } } } free(X); return pred; } matrix network_predict_data(network net, data test) { int i,j,b; int k = net.outputs; matrix pred = make_matrix(test.X.rows, k); float *X = calloc(net.batch*test.X.cols, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] = out[j+b*k]; } } } free(X); return pred; } void print_network(network net) { int i,j; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; float *output = l.output; int n = l.outputs; float mean = mean_array(output, n); float vari = variance_array(output, n); fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); if(n > 100) n = 100; for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); if(n == 100)fprintf(stderr,".....\n"); fprintf(stderr, "\n"); } } void compare_networks(network n1, network n2, data test) { matrix g1 = network_predict_data(n1, test); matrix g2 = network_predict_data(n2, test); int i; int a,b,c,d; a = b = c = d = 0; for(i = 0; i < g1.rows; ++i){ int truth = max_index(test.y.vals[i], test.y.cols); int p1 = max_index(g1.vals[i], g1.cols); int p2 = max_index(g2.vals[i], g2.cols); if(p1 == truth){ if(p2 == truth) ++d; else ++c; }else{ if(p2 == truth) ++b; else ++a; } } printf("%5d %5d\n%5d %5d\n", a, b, c, d); float num = pow((abs(b - c) - 1.), 2.); float den = b + c; printf("%f\n", num/den); } float network_accuracy(network net, data d) { matrix guess = network_predict_data(net, d); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; } float *network_accuracies(network net, data d, int n) { static float acc[2]; matrix guess = network_predict_data(net, d); acc[0] = matrix_topk_accuracy(d.y, guess, 1); acc[1] = matrix_topk_accuracy(d.y, guess, n); free_matrix(guess); return acc; } layer get_network_output_layer(network net) { int i; for(i = net.n - 1; i >= 0; --i){ if(net.layers[i].type != COST) break; } return net.layers[i]; } float network_accuracy_multi(network net, data d, int n) { matrix guess = network_predict_data_multi(net, d, n); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; } void free_network(network net) { int i; for(i = 0; i < net.n; ++i){ free_layer(net.layers[i]); } free(net.layers); if(net.input) free(net.input); if(net.truth) free(net.truth); #ifdef GPU if(net.input_gpu) cuda_free(net.input_gpu); if(net.truth_gpu) cuda_free(net.truth_gpu); #endif } // Some day... layer network_output_layer(network net) { int i; for(i = net.n - 1; i >= 0; --i){ if(net.layers[i].type != COST) break; } return net.layers[i]; } int network_inputs(network net) { return net.layers[0].inputs; } int network_outputs(network net) { return network_output_layer(net).outputs; } float *network_output(network net) { return network_output_layer(net).output; }