#include "blas.h" #include #include #include #include #include #include void reorg_cpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out) { int b,i,j,k; int out_c = c/(stride*stride); for(b = 0; b < batch; ++b){ for(k = 0; k < c; ++k){ for(j = 0; j < h; ++j){ for(i = 0; i < w; ++i){ int in_index = i + w*(j + h*(k + c*b)); int c2 = k % out_c; int offset = k / out_c; int w2 = i*stride + offset % stride; int h2 = j*stride + offset / stride; int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b)); if(forward) out[out_index] = x[in_index]; else out[in_index] = x[out_index]; } } } } } void flatten(float *x, int size, int layers, int batch, int forward) { float *swap = calloc(size*layers*batch, sizeof(float)); int i,c,b; for(b = 0; b < batch; ++b){ for(c = 0; c < layers; ++c){ for(i = 0; i < size; ++i){ int i1 = b*layers*size + c*size + i; int i2 = b*layers*size + i*layers + c; if (forward) swap[i2] = x[i1]; else swap[i1] = x[i2]; } } } memcpy(x, swap, size*layers*batch*sizeof(float)); free(swap); } void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) { int i; for(i = 0; i < n; ++i){ c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); } } void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc) { int i; for(i = 0; i < n; ++i){ if(da) da[i] += dc[i] * s[i]; if(db) db[i] += dc[i] * (1-s[i]); ds[i] += dc[i] * (a[i] - b[i]); } } void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float s1, float s2, float *out) { int stride = w1/w2; int sample = w2/w1; assert(stride == h1/h2); assert(sample == h2/h1); if(stride < 1) stride = 1; if(sample < 1) sample = 1; int minw = (w1 < w2) ? w1 : w2; int minh = (h1 < h2) ? h1 : h2; int minc = (c1 < c2) ? c1 : c2; int i,j,k,b; for(b = 0; b < batch; ++b){ for(k = 0; k < minc; ++k){ for(j = 0; j < minh; ++j){ for(i = 0; i < minw; ++i){ int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); out[out_index] = s1*out[out_index] + s2*add[add_index]; } } } } } void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) { float scale = 1./(batch * spatial); int i,j,k; for(i = 0; i < filters; ++i){ mean[i] = 0; for(j = 0; j < batch; ++j){ for(k = 0; k < spatial; ++k){ int index = j*filters*spatial + i*spatial + k; mean[i] += x[index]; } } mean[i] *= scale; } } void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) { float scale = 1./(batch * spatial - 1); int i,j,k; for(i = 0; i < filters; ++i){ variance[i] = 0; for(j = 0; j < batch; ++j){ for(k = 0; k < spatial; ++k){ int index = j*filters*spatial + i*spatial + k; variance[i] += pow((x[index] - mean[i]), 2); } } variance[i] *= scale; } } void l2normalize_cpu(float *x, float *dx, int batch, int filters, int spatial) { int b,f,i; for(b = 0; b < batch; ++b){ for(i = 0; i < spatial; ++i){ float sum = 0; for(f = 0; f < filters; ++f){ int index = b*filters*spatial + f*spatial + i; sum += powf(x[index], 2); } sum = sqrtf(sum); for(f = 0; f < filters; ++f){ int index = b*filters*spatial + f*spatial + i; x[index] /= sum; dx[index] = (1 - x[index]) / sum; } } } } void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) { int b, f, i; for(b = 0; b < batch; ++b){ for(f = 0; f < filters; ++f){ for(i = 0; i < spatial; ++i){ int index = b*filters*spatial + f*spatial + i; x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f); } } } } void const_cpu(int N, float ALPHA, float *X, int INCX) { int i; for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; } void mul_cpu(int N, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX]; } void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA); } void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX]; } void scal_cpu(int N, float ALPHA, float *X, int INCX) { int i; for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; } void fill_cpu(int N, float ALPHA, float *X, int INCX) { int i; for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; } void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) { int i, j; int index = 0; for(j = 0; j < B; ++j) { for(i = 0; i < NX; ++i){ if(X) X[j*NX + i] += OUT[index]; ++index; } for(i = 0; i < NY; ++i){ if(Y) Y[j*NY + i] += OUT[index]; ++index; } } } void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) { int i, j; int index = 0; for(j = 0; j < B; ++j) { for(i = 0; i < NX; ++i){ OUT[index++] = X[j*NX + i]; } for(i = 0; i < NY; ++i){ OUT[index++] = Y[j*NY + i]; } } } void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; } void mult_add_into_cpu(int N, float *X, float *Y, float *Z) { int i; for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i]; } void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float diff = truth[i] - pred[i]; float abs_val = fabs(diff); if(abs_val < 1) { error[i] = diff * diff; delta[i] = diff; } else { error[i] = 2*abs_val - 1; delta[i] = (diff < 0) ? 1 : -1; } } } void l1_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float diff = truth[i] - pred[i]; error[i] = fabs(diff); delta[i] = diff > 0 ? 1 : -1; } } void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float t = truth[i]; float p = pred[i]; error[i] = (t) ? -log(p) : 0; delta[i] = t-p; } } void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float t = truth[i]; float p = pred[i]; error[i] = -t*log(p) - (1-t)*log(1-p); delta[i] = t-p; } } void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float diff = truth[i] - pred[i]; error[i] = diff * diff; delta[i] = diff; } } float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) { int i; float dot = 0; for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY]; return dot; } void softmax(float *input, int n, float temp, int stride, float *output) { int i; float sum = 0; float largest = -FLT_MAX; for(i = 0; i < n; ++i){ if(input[i*stride] > largest) largest = input[i*stride]; } for(i = 0; i < n; ++i){ float e = exp(input[i*stride]/temp - largest/temp); sum += e; output[i*stride] = e; } for(i = 0; i < n; ++i){ output[i*stride] /= sum; } } void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) { int g, b; for(b = 0; b < batch; ++b){ for(g = 0; g < groups; ++g){ softmax(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset); } } } void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) { int i, j, k, b; for(b = 0; b < batch; ++b){ for(k = 0; k < c; ++k){ for(j = 0; j < h*stride; ++j){ for(i = 0; i < w*stride; ++i){ int in_index = b*w*h*c + k*w*h + (j/stride)*w + i/stride; int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i; if(forward) out[out_index] = scale*in[in_index]; else in[in_index] += scale*out[out_index]; } } } } }