#include "darknet.h" #include typedef struct { float *x; float *y; } float_pair; int *read_tokenized_data(char *filename, size_t *read) { size_t size = 512; size_t count = 0; FILE *fp = fopen(filename, "r"); int *d = calloc(size, sizeof(int)); int n, one; one = fscanf(fp, "%d", &n); while(one == 1){ ++count; if(count > size){ size = size*2; d = realloc(d, size*sizeof(int)); } d[count-1] = n; one = fscanf(fp, "%d", &n); } fclose(fp); d = realloc(d, count*sizeof(int)); *read = count; return d; } char **read_tokens(char *filename, size_t *read) { size_t size = 512; size_t count = 0; FILE *fp = fopen(filename, "r"); char **d = calloc(size, sizeof(char *)); char *line; while((line=fgetl(fp)) != 0){ ++count; if(count > size){ size = size*2; d = realloc(d, size*sizeof(char *)); } if(0==strcmp(line, "")) line = "\n"; d[count-1] = line; } fclose(fp); d = realloc(d, count*sizeof(char *)); *read = count; return d; } float_pair get_rnn_token_data(int *tokens, size_t *offsets, int characters, size_t len, int batch, int steps) { float *x = calloc(batch * steps * characters, sizeof(float)); float *y = calloc(batch * steps * characters, sizeof(float)); int i,j; for(i = 0; i < batch; ++i){ for(j = 0; j < steps; ++j){ int curr = tokens[(offsets[i])%len]; int next = tokens[(offsets[i] + 1)%len]; x[(j*batch + i)*characters + curr] = 1; y[(j*batch + i)*characters + next] = 1; offsets[i] = (offsets[i] + 1) % len; if(curr >= characters || curr < 0 || next >= characters || next < 0){ error("Bad char"); } } } float_pair p; p.x = x; p.y = y; return p; } float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps) { float *x = calloc(batch * steps * characters, sizeof(float)); float *y = calloc(batch * steps * characters, sizeof(float)); int i,j; for(i = 0; i < batch; ++i){ for(j = 0; j < steps; ++j){ unsigned char curr = text[(offsets[i])%len]; unsigned char next = text[(offsets[i] + 1)%len]; x[(j*batch + i)*characters + curr] = 1; y[(j*batch + i)*characters + next] = 1; offsets[i] = (offsets[i] + 1) % len; if(curr > 255 || curr <= 0 || next > 255 || next <= 0){ /*text[(index+j+2)%len] = 0; printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]); printf("%s", text+index); */ error("Bad char"); } } } float_pair p; p.x = x; p.y = y; return p; } void reset_rnn_state(network net, int b) { int i; for (i = 0; i < net.n; ++i) { #ifdef GPU layer l = net.layers[i]; if(l.state_gpu){ fill_gpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); } if(l.h_gpu){ fill_gpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1); } #endif } } void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized) { srand(time(0)); unsigned char *text = 0; int *tokens = 0; size_t size; if(tokenized){ tokens = read_tokenized_data(filename, &size); } else { FILE *fp = fopen(filename, "rb"); fseek(fp, 0, SEEK_END); size = ftell(fp); fseek(fp, 0, SEEK_SET); text = calloc(size+1, sizeof(char)); fread(text, 1, size, fp); fclose(fp); } char *backup_directory = "/home/pjreddie/backup/"; char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = net.inputs; fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g, Inputs: %d %d %d\n", net.learning_rate, net.momentum, net.decay, inputs, net.batch, net.time_steps); int batch = net.batch; int steps = net.time_steps; if(clear) *net.seen = 0; int i = (*net.seen)/net.batch; int streams = batch/steps; size_t *offsets = calloc(streams, sizeof(size_t)); int j; for(j = 0; j < streams; ++j){ offsets[j] = rand_size_t()%size; } clock_t time; while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); float_pair p; if(tokenized){ p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps); }else{ p = get_rnn_data(text, offsets, inputs, size, streams, steps); } copy_cpu(net.inputs*net.batch, p.x, 1, net.input, 1); copy_cpu(net.truths*net.batch, p.y, 1, net.truth, 1); float loss = train_network_datum(net) / (batch); free(p.x); free(p.y); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; size_t chars = get_current_batch(net)*batch; fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size); for(j = 0; j < streams; ++j){ //printf("%d\n", j); if(rand()%64 == 0){ //fprintf(stderr, "Reset\n"); offsets[j] = rand_size_t()%size; reset_rnn_state(net, j); } } if(i%10000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); } void print_symbol(int n, char **tokens){ if(tokens){ printf("%s ", tokens[n]); } else { printf("%c", n); } } void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file) { char **tokens = 0; if(token_file){ size_t n; tokens = read_tokens(token_file, &n); } srand(rseed); char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = net.inputs; int i, j; for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; int c = 0; int len = strlen(seed); float *input = calloc(inputs, sizeof(float)); /* fill_cpu(inputs, 0, input, 1); for(i = 0; i < 10; ++i){ network_predict(net, input); } fill_cpu(inputs, 0, input, 1); */ for(i = 0; i < len-1; ++i){ c = seed[i]; input[c] = 1; network_predict(net, input); input[c] = 0; print_symbol(c, tokens); } if(len) c = seed[len-1]; print_symbol(c, tokens); for(i = 0; i < num; ++i){ input[c] = 1; float *out = network_predict(net, input); input[c] = 0; for(j = 32; j < 127; ++j){ //printf("%d %c %f\n",j, j, out[j]); } for(j = 0; j < inputs; ++j){ if (out[j] < .0001) out[j] = 0; } c = sample_array(out, inputs); print_symbol(c, tokens); } printf("\n"); } void test_tactic_rnn_multi(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file) { char **tokens = 0; if(token_file){ size_t n; tokens = read_tokens(token_file, &n); } srand(rseed); char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = net.inputs; int i, j; for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; int c = 0; float *input = calloc(inputs, sizeof(float)); float *out = 0; while(1){ reset_rnn_state(net, 0); while((c = getc(stdin)) != EOF && c != 0){ input[c] = 1; out = network_predict(net, input); input[c] = 0; } for(i = 0; i < num; ++i){ for(j = 0; j < inputs; ++j){ if (out[j] < .0001) out[j] = 0; } int next = sample_array(out, inputs); if(c == '.' && next == '\n') break; c = next; print_symbol(c, tokens); input[c] = 1; out = network_predict(net, input); input[c] = 0; } printf("\n"); } } void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file) { char **tokens = 0; if(token_file){ size_t n; tokens = read_tokens(token_file, &n); } srand(rseed); char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = net.inputs; int i, j; for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; int c = 0; float *input = calloc(inputs, sizeof(float)); float *out = 0; while((c = getc(stdin)) != EOF){ input[c] = 1; out = network_predict(net, input); input[c] = 0; } for(i = 0; i < num; ++i){ for(j = 0; j < inputs; ++j){ if (out[j] < .0001) out[j] = 0; } int next = sample_array(out, inputs); if(c == '.' && next == '\n') break; c = next; print_symbol(c, tokens); input[c] = 1; out = network_predict(net, input); input[c] = 0; } printf("\n"); } void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed) { char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = net.inputs; int count = 0; int words = 1; int c; int len = strlen(seed); float *input = calloc(inputs, sizeof(float)); int i; for(i = 0; i < len; ++i){ c = seed[i]; input[(int)c] = 1; network_predict(net, input); input[(int)c] = 0; } float sum = 0; c = getc(stdin); float log2 = log(2); int in = 0; while(c != EOF){ int next = getc(stdin); if(next == EOF) break; if(next < 0 || next >= 255) error("Out of range character"); input[c] = 1; float *out = network_predict(net, input); input[c] = 0; if(c == '.' && next == '\n') in = 0; if(!in) { if(c == '>' && next == '>'){ in = 1; ++words; } c = next; continue; } ++count; sum += log(out[next])/log2; c = next; printf("%d %d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words)); } } void valid_char_rnn(char *cfgfile, char *weightfile, char *seed) { char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = net.inputs; int count = 0; int words = 1; int c; int len = strlen(seed); float *input = calloc(inputs, sizeof(float)); int i; for(i = 0; i < len; ++i){ c = seed[i]; input[(int)c] = 1; network_predict(net, input); input[(int)c] = 0; } float sum = 0; c = getc(stdin); float log2 = log(2); while(c != EOF){ int next = getc(stdin); if(next == EOF) break; if(next < 0 || next >= 255) error("Out of range character"); ++count; if(next == ' ' || next == '\n' || next == '\t') ++words; input[c] = 1; float *out = network_predict(net, input); input[c] = 0; sum += log(out[next])/log2; c = next; printf("%d BPC: %4.4f Perplexity: %4.4f Word Perplexity: %4.4f\n", count, -sum/count, pow(2, -sum/count), pow(2, -sum/words)); } } void vec_char_rnn(char *cfgfile, char *weightfile, char *seed) { char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = net.inputs; int c; int seed_len = strlen(seed); float *input = calloc(inputs, sizeof(float)); int i; char *line; while((line=fgetl(stdin)) != 0){ reset_rnn_state(net, 0); for(i = 0; i < seed_len; ++i){ c = seed[i]; input[(int)c] = 1; network_predict(net, input); input[(int)c] = 0; } strip(line); int str_len = strlen(line); for(i = 0; i < str_len; ++i){ c = line[i]; input[(int)c] = 1; network_predict(net, input); input[(int)c] = 0; } c = ' '; input[(int)c] = 1; network_predict(net, input); input[(int)c] = 0; layer l = net.layers[0]; #ifdef GPU cuda_pull_array(l.output_gpu, l.output, l.outputs); #endif printf("%s", line); for(i = 0; i < l.outputs; ++i){ printf(",%g", l.output[i]); } printf("\n"); } } void run_char_rnn(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt"); char *seed = find_char_arg(argc, argv, "-seed", "\n\n"); int len = find_int_arg(argc, argv, "-len", 1000); float temp = find_float_arg(argc, argv, "-temp", .7); int rseed = find_int_arg(argc, argv, "-srand", time(0)); int clear = find_arg(argc, argv, "-clear"); int tokenized = find_arg(argc, argv, "-tokenized"); char *tokens = find_char_arg(argc, argv, "-tokens", 0); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized); else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed); else if(0==strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed); else if(0==strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed); else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens); else if(0==strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens); }