#include "softmax_layer.h" #include "mini_blas.h" #include #include #include #include softmax_layer *make_softmax_layer(int batch, int inputs) { fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); softmax_layer *layer = calloc(1, sizeof(softmax_layer)); layer->batch = batch; layer->inputs = inputs; layer->output = calloc(inputs*batch, sizeof(float)); layer->delta = calloc(inputs*batch, sizeof(float)); layer->jacobian = calloc(inputs*inputs*batch, sizeof(float)); #ifdef GPU layer->output_cl = cl_make_array(layer->output, inputs*batch); layer->delta_cl = cl_make_array(layer->delta, inputs*batch); #endif return layer; } void forward_softmax_layer(const softmax_layer layer, float *input) { int i,b; for(b = 0; b < layer.batch; ++b){ float sum = 0; float largest = -FLT_MAX; for(i = 0; i < layer.inputs; ++i){ if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs]; } for(i = 0; i < layer.inputs; ++i){ sum += exp(input[i+b*layer.inputs]-largest); } if(sum) sum = largest+log(sum); else sum = largest-100; for(i = 0; i < layer.inputs; ++i){ layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum); } } } void backward_softmax_layer(const softmax_layer layer, float *delta) { int i; for(i = 0; i < layer.inputs*layer.batch; ++i){ delta[i] = layer.delta[i]; } } #ifdef GPU void pull_softmax_layer_output(const softmax_layer layer) { cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch); } cl_kernel get_softmax_forward_kernel() { static int init = 0; static cl_kernel kernel; if(!init){ kernel = get_kernel("src/softmax_layer.cl", "forward", 0); init = 1; } return kernel; } void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input) { cl_kernel kernel = get_softmax_forward_kernel(); cl_command_queue queue = cl.queue; cl_uint i = 0; cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs); cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input); cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl); check_error(cl); const size_t global_size[] = {layer.batch}; cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0); check_error(cl); /* cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch); int z; for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]); */ } void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta) { copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1); } #endif /* This is if you want softmax w/o log-loss classification. You probably don't. int i,j,b; for(b = 0; b < layer.batch; ++b){ for(i = 0; i < layer.inputs; ++i){ for(j = 0; j < layer.inputs; ++j){ int d = (i==j); layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] = layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]); } } } for(b = 0; b < layer.batch; ++b){ int M = layer.inputs; int N = 1; int K = layer.inputs; float *A = layer.jacobian + b*layer.inputs*layer.inputs; float *B = layer.delta + b*layer.inputs; float *C = delta + b*layer.inputs; gemm(0,0,M,N,K,1,A,K,B,N,0,C,N); } */